Objective:
To characterize different types of CMOS gates (Inverters, NAND and NOR gates, and Transmission gates). To compare PSpice simulations with experimental observations.

Components:
1 × CD4007UB MOSFET Array, 2 × 0.1 µF capacitors, and resistors: 1 × 100 Ω, 1 × 10 kΩ (5%, ¼ W).

Instrumentation:
A bench power supply, a triangular-wave generator, a pulse generator, a digital multi-meter, and a dual-trace oscilloscope with X10 probes.

PART I – THEORETICAL BACKGROUND

The **threshold voltage** of an nMOSFET is

\[V_{tn} = V_{tn0} + \gamma_n \left(\sqrt{2|\phi_p| + V_{SB}} - \sqrt{2|\phi_p|} \right) \] \hspace{1cm} (1)

where \(V_{tn0} \) is the threshold voltage with \(V_{SB} = 0 \), \(\gamma_n \) is the body-effect coefficient, and \(\phi_p \approx -0.3 \) V. For an nMOSFET we must always have \(V_{SB} \geq 0 \) V, this being the reason why in ICs the body of nMOSFETs is always tied to the most negative voltage (MNV). An enhancement nMOSFET has \(V_{tn0} > 0 \), so rising \(V_{SB} \) above 0 V will make \(V_{tn} \) even more positive.

For \(v_{GS} \leq V_{tn} \), the nMOSFET is in cutoff. For \(v_{GS} \geq V_{tn} \), the nMOSFET is on, and it operates either in the **saturation** region (also called **active** region), or in the **triode** region (also improperly called the **linear** region), depending on the range of values of \(v_{DS} \). Specifically, for \(v_{DS} \geq v_{GS} - V_{tn} \) the device operates in saturation, where we have

\[i_{D(Sat)} = \frac{k_n}{2} (v_{GS} - V_{tn})^2 \times (1 + \lambda_n v_{DS}) \] \hspace{1cm} (2)

while for \(v_{DS} \leq v_{GS} - V_{tn} \) it operates in the **triode** region, where we have

\[i_{D(Tri)} = k_n (v_{GS} - V_{tn}) v_{DS} - \frac{1}{2} v_{DS}^2 \] \times (1 + \lambda_n v_{DS}) \] \hspace{1cm} (3)

In the above equations, \(k_n \) is the **device transconductance parameter**, and \(\lambda_n \) is the **channel-length modulation parameter**. In DC calculations it is customary to assume \(\lambda_n = 0 \) for simplicity. We also have

\[k_n = k_n' \frac{W}{L} \] \hspace{1cm} (4)

where \(k_n' \) is the **process transconductance parameter**, and \(W \) and \(L \) are the channel **width** and **length**.
In saturation an nMOSFET exhibits current-source behavior, while near the origin of its i_D-v_{DS} characteristic it exhibits resistive behavior. In fact, ignoring v_{DS}^2 as well as $\lambda_n v_{DS}$ near the origin, we obtain $i_{DS(\Omega)} \cong k_n(v_{GS} - V_m)v_{DS}$, indicating an approximately linear dependence of i_D upon v_{DS}. The reciprocal of the slope of the i_D-v_{DS} curve is the channel resistance near the origin,

$$r_{DSn} = \frac{1}{k_n(v_{GS} - V_m)}$$

(5)

This expression indicates voltage-controlled resistance behavior, with v_{GS} being the control voltage. Note that r_{DSn} depends also on the body bias via V_m. Moreover, the larger the value of k_n, the smaller r_{DSn}.

Dual considerations hold for pMOSFETs, provided we reverse voltage polarities and current directions. Thus, the threshold voltage of a pMOSFET is

$$V_{q} = V_{q0} - \gamma_p \left(\sqrt{2\phi_n + V_{BS}} - \sqrt{2\phi_n}\right)$$

(6)

where V_{q0} is the threshold voltage for $V_{BS} = 0$, γ_p is the body-effect coefficient, and $\phi_n \approx -0.3$ V. For a pMOSFET we must always have $V_{BS} \geq 0$ V, this being the reason why in ICs the body of pMOSFETs is always tied to the most positive voltage (MPV). An enhancement pMOSFET has $V_{q0} < 0$, so rising V_{BS} above 0 V will make V_q even more negative.

For $v_{SG} \leq |V_{q}|$, the pMOSFET is in cutoff. For $v_{SG} > |V_{q}|$, the pMOSFET is on, and it operates either in the saturation region (also called active region), or in the triode region (also called linear region), depending on the range of values of v_{SD}. Specifically, for $v_{SD} \geq v_{SG} - |V_{q}|$, the device operates in saturation, where we have

$$i_{D(PO)} = \frac{k_p}{2} (v_{SG} - |V_{q}|)^2 \times (1 + \lambda_p v_{SD})$$

(7)

while for $v_{SD} \leq v_{SG} - |V_{m}|$ it operates in the triode region, where we have

$$i_{D(T)} = k_p (v_{SG} - |V_{q}|) v_{SD} - \frac{1}{2} v_{SD}^2 \times (1 + \lambda_p v_{SD})$$

(8)

In the above equations, k_p is the device transconductance parameter, and λ_p is the channel-length modulation parameter. In DC calculations it is customary to assume $\lambda_p = 0$ for simplicity. We also have

$$k_p = k'_p \frac{W_p}{L_p}$$

(9)

where k'_p is the process transconductance parameter, and W_p and L_p are the channel width and length.

In saturation, a pMOSFET exhibits current-source behavior, while near the origin of its i_D-v_{SD} characteristic it exhibits resistive behavior. In fact, ignoring v_{SD}^2 as well as $\lambda_n v_{SD}$ near the origin, we obtain $i_{DS(\Omega)} \cong k_p(v_{SG} - |V_{q}|)v_{SD}$, indicating an approximately linear dependence of i_D upon v_{SD}. The reciprocal of the slope of the i_D-v_{SD} curve is the channel resistance near the origin,
This expression indicates voltage-controlled resistance behavior, with \(v_{SG} \) being the control signal. Note that \(r_{SDp} \) depends also on the body bias via \(V_{tp} \). Moreover, the larger the value of \(k_p \), the smaller \(r_{SDp} \).

VTCs and Noise Margins:

The most basic logic circuit is the inverter. To build a complex digital system we need more sophisticated logic circuits such as a NAND and NOR gates, flip-flops, encoders/decoders, registers, and memories. However, when it comes to the study of electrical properties, the basic inverter, in spite of its simplicity, is fairly representative of most logic circuits, so we find it appropriate to investigate it in proper detail.

As a signal produced by a transmitting gate travels down a wire, it picks up various forms of noise, so by the time it reaches a receiving gate it may be appreciably contaminated. The question arises as to how much noise can be tolerated at the receiving end and still allow for the signal to be interpreted correctly there. A logic family’s ability to function correctly in noisy environments is measured via its noise margins.

As shown in Fig. 1(a), an inverter is powered between \(V_S \) (typically 5 V) and ground. Circuit behavior is best visualized via the voltage transfer curve (VTC), representing the plot of \(v_O \) versus \(v_I \). Figure 1(b) shows the idealized VTC. For \(v_I < 0.5V_S \) the circuit gives \(v_O = V_S (= V_{OH}) \), and for \(v_I > 0.5V_S \) it gives \(v_O = 0 \) V (= \(V_{OL} \)). The VTC of a practical inverter will generally depart from this idealized shape, and will look more like that of Fig. 1(c). Here we observe that as long as \(v_I \) is sufficiently low (near 0V), the inverter gives \(v_O = V_{OH} \) (note that \(V_{OH} \) is not necessarily \(V_S \)); as long as \(v_I \) is sufficiently high (near \(V_S \)), the inverter gives \(v_O = V_{OL} \) (note that \(V_{OL} \) is not necessarily 0 V).

The departure of a practical VTC from the ideal is specified in terms of the noise margins, defined as

\[
N_{ML} = V_{IL} - V_{OL} \tag{11a}
\]

\[
N_{MH} = V_{OH} - V_{IH} \tag{11b}
\]

where \(V_{IL} \) and \(V_{IH} \) are the values of \(v_I \) corresponding to the points of the VTC where slope is \(-1 \) V/V. Physically, the noise margins represent the maximum amount of noise that can be tolerated on a line going
from the output of a transmitting gate to the input of a receiving gate. As illustrated further in Fig. 2, any noise in excess of this margin will be amplified by the receiving gate by more than unity, potentially leading to erroneous circuit behavior. Clearly, the higher the noise margins, the better. For the idealized VTC of Fig. 1(b) we have \(NM_L = NM_H = 0.5 V_S = 2.5 \) V for \(V_S = 5 \) V.

VTCs are readily visualized with a dual-trace oscilloscope operated in the \(x-y \) mode, or via PSpice using a DC Sweep. Figure 3 shows a PSpice circuit to display both the voltage transfer curve (VTC) and the current transfer curve (ITC) of a CMOS inverter consisting of two homebrew MOSFETs, called respectively 453nMOSFET and 453pMOSFET. Both devices were created by renaming and suitably editing the \(PSpice \) Models of two MOSFETs available in the PSpice Library. This has been done first by clicking the device to select it, then by clicking \textbf{Edit} \(\rightarrow \) \textbf{PSpice Model} to change the values of its parameters. Following are the model statements for the two devices:

```
.model 453nMOSFET NMOS(W=4u L=1u kp=50u Vto=1 lambda=0.01)
.model 453pMOSFET PMOS(W=8u L=1u kp=20u Vto=-1.5 lambda=0.02)
```

The two curves are shown in Fig. 4.

As depicted in the VTC display at the top, the input sweep carries the two MOSFETs, denoted respectively as \(M_p \) and \(M_n \), thorough the regions shown (CO indicates the \textit{cutoff} region, \(\Omega \) the \textit{ohmic}}
region, and PO the pinch-off region). One can use simple graphical techniques to identify the points where slope is \(-1\) V/V and thus find \(V_{IL}\) and \(V_{IH}\). Then, one calculates the noise margins via Eq. (11).

The central portion of the VTC, where both MOSFETs are in PO and slope is the steepest, is of great interest in analog applications. The slope \(a = \frac{dV_O}{dV_I}\) there represents voltage gain. The value of \(V_I\) around which this region is centered shall be called the trip voltage \(V_T\). We observe that because of differences in the parameters of the \(n\)MOSFETs and \(p\)MOSFETs, the trip voltage \(V_T\) is not necessarily halfway between 0 V and \(V_{DD}\), that is, in general we have \(V_T \neq \frac{1}{2}V_{DD}\).

Also shown in Fig. 4, bottom, is the plot of the current \(I_{DD}\) drawn by the inverter from its supply \(V_{DD}\) as a function of \(V_I\). This current is zero both for \(V_I \leq V_{tn}\), where the \(n\)MOSFET is in CO, and for \(V_I \geq (V_{DD} - |V_{tp}|)\), where the \(p\)MOSFET is in CO. However, for \(V_m \leq V_I \leq (V_{DD} - |V_{tp}|)\), both MOSFETs conduct, and the current exhibits a bell-shaped profile. Its maximum shall be denoted as \(I_m\), and the value of \(V_I\) at which it occurs shall be denoted as \(V_m\). Near this point both FETs are operating in PO. In general \(V_m\) and \(V_T\) are not necessarily identical, though very close.

Fig. 4 - Voltage (top) and current (bottom) transfer curves for the CMOS inverter of Fig. 3.
You can simulate the above inverter on your own by downloading its appropriate files from the Web. To this end, go to http://online.sfsu.edu/~sfranco/CoursesAndLabs/Labs/301Labs.html, and once there, click on PSpice Examples. Then, follow the instructions contained in the Readme file.

Propagation Delays:
An inverter’s response to a sharp-edged input pulse is not instantaneous, as the circuit takes a certain amount of time to swing its output from one level to the other (see Fig. 5). The speed of response is characterized in terms of the propagation delays t_{PLH} and t_{PHL}. The amount of time, following the leading edge v_I, that it takes for v_O to swing from V_{OH} down to the transition’s midpoint, defined as

$$V_{50\%} = \frac{V_{OL} + V_{OH}}{2}$$

(12)

is denoted as t_{PHL}. Likewise, the amount of time, following the trailing edge of v_I, that it takes for v_O to swing from V_{OL} up to $V_{50\%}$ is denoted as t_{PLH}. The two delays are not necessarily identical, so their average

$$t_p = \frac{t_{PLH} + t_{PHL}}{2}$$

(13)

is aptly called the average propagation delay. In CMOS gates, the nonzero propagation delays stem from the parasitic capacitances internal to the MOSFETs that need to be charged/discharged in order to allow for the output to switch from one state to the other.

PART II – EXPERIMENTAL PART

The purpose of this laboratory is to characterize a variety of gates implemented with the transistors of the CD4007UB MOSFET Array that you have characterized in Lab #1. For convenience, the pin diagram of this IC is repeated in Fig. 6. Beware that all wiring tips and experimental precautions stressed in Lab #1 still hold! If you damage the particular CD4007 sample you are working with, you’ll need to characterize a new sample in order to ensure consistency between measurements and simulations. Transistors belonging to the same IC sample are indeed matched to a good degree, but no matching can be expected between different IC samples.

Henceforth, steps shall be identified by letters as follows: C for calculations, M for
measurements, \(P \) for pre-lab preparations, and \(S \) for Spice simulations. As usual, all data must be expressed in the form \(X \pm \Delta X \).

Basic CMOS Inverter

PC1: Using the \(n \)MOSFET and \(p \)MOSFET values of \(V_{t0} \) and \(k \) determined in Lab #1, predict the noise margins of the CMOS inverter of Fig. 7a, as well as the trip voltage \(V_T \).

Hint: (a) To find \(V_{IL} \), impose \(i_{DSn(PO)} = i_{DSp(\Omega)} \) (use \(\lambda_n = \lambda_p = 0 \) for simplicity; also, note that \(v_{GSn} = v_i; \ v_{SGp} = V_{DD} - v_i \), and \(v_{SDp} = V_{DD} - v_o \)). Next, differentiate both sides with respect to \(v_i \), impose \(dv_o/dv_i = -1 \), and calculate at \(v_i = V_{IL} \).

Fig. 6 – The CD4007 MOSFET Array.

Fig. 7 – (a) CMOS inverter. (b) Using \(R \) to sense the inverter’s current.
(b) To find V_{IH}, impose $i_{Ds}(0) = i_{Ds}(PO)$ (again use $\lambda_n = \lambda_p = 0$, along with $v_{GSn} = v_T$, $v_{DSn} = v_O$, and $v_{SGP} = V_{DD} - v_I$). Next differentiate both sides with respect to v_I, impose $dv_{GS}/dv_I = -1$, and calculate at $v_I = V_{IH}$.

(c) To find V_T, impose $i_{Dn}(PO) = i_{Dp}(PO)$ (use $\lambda_n = \lambda_p = 0$ for simplicity, and note that $v_{GSn} = v_I$ and $v_{SGP} = V_{DD} - v_I$). Then, let $v_I \rightarrow V_T$, and solve for V_T.

PS2: Plot the VTC of the inverter of Step PC1 using PSpice, find V_{IL}, V_{IH}, V_{OL}, V_{OH}, and V_T graphically, compare with predicted values, and justify any discrepancies.

MC3: Observe the VTC of the inverter of Step PC1 experimentally with the oscilloscope, determine V_{IL}, V_{IH}, V_{OL}, V_{OH}, and V_T graphically, compute the noise margins, compare with those of Step PS2, and justify any discrepancies.

Reminder: To observe the VTC experimentally, first adjust the signal generator so that v_I is a triangular wave of about 100 Hz and alternating between V_{SS} (0 V) and V_{DD} (5 V); adjust it while monitoring it with the oscilloscope. Next, switch the oscilloscope to the x-y mode, with v_I as the x axis (Ch. 1, 1 V/div, DC), and v_O as the y axis (Ch. 2, 1 V/div, DC). Before connecting the scope to your circuit, adjust the offsets of the two channels so that the origin of the x-y display (dot) is at the lower left corner of the screen. Also, keep the beam intensity suitably low to avoid burning out the phosphor on the CRT.

PC4: Using the nMOSFET and pMOSFET values of V_{th} and k determined in Lab #1, predict the values of V_m and I_m for the inverter of Fig. 7a. (Recall that I_m is the maximum value of i_{DD}, and V_m is the value of v_I at which this maximum occurs.)

Hint: To find V_m, impose $i_{Dn}(PO) = i_{Dp}(PO)$ (use $\lambda_n = \lambda_p = 0$ for simplicity, and note that $v_{GSn} = v_I$ and $v_{SGP} = V_{DD} - v_I$). Then, let $v_I \rightarrow V_m$, and solve for V_m; next, find I_m by calculating $i_{Dn}(PO)$ at $v_{GSn} = V_m$.

PS5: Use PSpice to plot i_{DD} versus v_I for the inverter of Step PC4, find I_m and V_m graphically, compare with those of Step PC4, and justify any discrepancies.

M6: Observe the plot of i_{DD} versus v_I for the inverter of Step PC4 experimentally; find I_m and V_m graphically, compare with those of Step PS5, and justify any discrepancies.

Hint: To be able to observe i_{DD} on the oscilloscope, lift Pin 7 off ground and insert a small (100 Ω) current-sensing resistance in series between Pin 7 and ground, as shown in Fig. 7b, and use v_R to drive the y axis of your display. Clearly, $i_{DD} = v_R/R$.

Buffered CMOS Inverter

The VTC of the basic inverter of Fig. 7a can be improved considerably by buffering it with one or more additional inverters. To retain the logic function of inversion, two additional inverters are needed in this case. The resulting circuit, shown in Fig. 8, is aptly called a buffered inverter (by contrast, that of Fig. 7a is an unbuffered inverter).

MC7: With power off, assemble the circuit of Fig. 8. Then, apply power, and use the oscilloscope to display the VTC from Pin 6 to Pin 3, then the VTC from Pin 6 to Pin 10, and finally the VTC from Pin 6 to Pin 12. You will observe a progressive increase in the squareness of the VTCs as you move the probe from Pin 3 to Pin 10 to Pin 12. How do you justify this? Finally, find the noise margins of the buffered inverter, compare with those of its unbuffered counterpart, and comment on the significant improvement.

Propagation Delays:

MC8: Adjust the pulse generator for a train of pulses alternating between 0 V and 5 V, and a period of about 1 μs; use Ch. 1, 1 V/div, DC. Apply it to the inverter of Fig. 7a, and monitor the output with Ch. 2,
1 V/div, DC. Adjust the pulse generator frequency until the waveforms look approximately as in Fig. 5, and measure \(t_{PLH} \) and \(t_{PHL} \). Beware that \(t_{PLH} \) and \(t_{PHL} \) are not necessarily equal, due to the different current-driving capabilities of the two transistors. Finally, calculate \(t_P \).

Warning: Don’t forget to take into account the effects of probe loading, as discussed in connection with Step M12 of Lab #1. For this measurement, it is critical that you use a low-input capacitance probe, such as a X10 probe as discussed in Appendix 2. Also, make sure that your probe is properly compensated, and keep all leads short to reduce the effect of stray capacitances!

MC9: Repeat Step MC8, but for the buffered inverter of Fig. 8. Compare with the delays of its unbuffered counterpart, and comment. Clearly, the price for the better noise margins of buffered gates is increased circuit complexity and delay.

The Power-Delay Product

The power-delay product (PDP), defined as the product of the average power dissipation per gate \(P_D \) and the gate’s average propagation delay \(t_P \), represents a figure of merit of a particular logic family, and allows for comparison among different families. To find this parameter, we operate our three inverters as a ring counter, we measure its period of oscillation \(T \) as well as the average current \(I_{DD} \) it draws from the \(V_{DD} \) supply. We then find the average power dissipation per gate \(P_D = (1/3)V_{DD} \times I_{DD} \), and the average gate delay as \(t_P = T/6 \), and finally we take their product \(PDP = P_D \times t_P \).

MC10: With power off, disconnect the input pulse generator from the circuit of Fig. 8, and connect Pin 6 to Pin 12 to make the circuit work as a ring counter. Moreover, insert the digital current meter in series between the power supply \(V_{DD} \) and the common node formed by Pins 14-1-11. Now turn power on, and measure the average current \(I_{DD} \) drawn by your ring counter from the \(V_{DD} \) supply, as well at the period of oscillation \(T \). Finally, compute the PDP as indicated above.

NOR and NAND Gates

Figure 9 show the interconnections for NOR and NAND gate operation. If we invert \(v_O \) with an additional inverter made up of the remaining transistors \(M_5 \) and \(M_6 \), the inverter output will provide the OR and the AND functions, respectively. In anticipation of the measurements you are about to make, keep in mind that:
• Two matched MOSFETS connected in parallel act as a single MOSFET with a channel width twice as long, effectively doubling the device transconductance parameter k.

• Two matched MOSFETS connected in series act as a single MOSFET with a channel length twice as long, effectively halving the device transconductance parameter k.

MC11: With power off, assemble the NOR gate of Fig. 9a. Turn power on, and with the inputs tied together to make the gate work as an inverter, observe the VTC with the oscilloscope and find the noise margins as well as the trip voltage. Next, measure the propagation delays (you’ll find that one of them is significantly longer than the other; why?). Compare with the unbuffered inverter of Steps MC3 and MC8, and account for all differences.

MC12: With power off, configure M_5 and M_6 (see Fig. 6) as a logic inverter, and place it at the output of the NOR gate of Fig. 9a to turn it into an OR gate. Then, find the noise margins, trip voltage, and propagation delays of this AND gate. Compare them with those of the NOR gate, and justify all differences.

MC13: Repeat Steps MC11 and MC12, but for the NAND gate of Fig. 9b.

Transmission Gates:
Many electronic systems call for an electronically-controlled switch, that is, a switch whose state is controlled not manually by a human, but electronically by another circuit. Figure 10 illustrates a typical example. Here, an input source producing an analog signal v_S capable of assuming a continuum of values
over the range $-5 \, \text{V} \leq v_S \leq +5\, \text{V}$, is connected to a load R_L via a voltage controlled switch SW, whose status is controlled by a binary control signal E as follows:

- When $E = \text{HIGH}$, $SW = \text{closed}$, and $v_O = v_i$, indicating that the input is transmitted to the output
- When $E = \text{LOW}$, $SW = \text{open}$, and $v_O = 0 \, \text{V}$, indicating that signal transmission is inhibited.

For obvious reasons, an electronically-controlled switch capable of transmitting or inhibiting analog signals is also called an analog transmission gate.

A good candidate for the role of electronic switch is an nMOSFET (M_3 in Fig. 11), where the channel forms the switch SW, and v_{GS3} plays the role of the control voltage E. As we know, for $v_{GS3} = \text{LOW}$ (in practice, for $v_{GS3} < V_{th}$), M_3 is in cutoff and its channel acts as an open switch. However, for $v_{GS3} = \text{HIGH}$ (in practice, for $v_{GS3} >> V_{th}$), M_3 will be heavily on. If the voltage v_{DS3} across its channel is sufficiently small, the channel will, according to Eq. (5), act as a small resistance r_{DSn}, effectively approximating a closed switch. Clearly, we’d like this resistance to be as small as possible.

Given that the supply voltages in Fig. 11 are $V_{DD} = +5\, \text{V}$ and $V_{SS} = -5\, \text{V}$, the voltage levels of the

![Fig. 10 – Illustrating the transmission gate concept.](image1)

![Fig. 11 – CMOS realization of a transmission gate.](image2)
control signal E are likewise HIGH = +5V and LOW = –5 V. Recall that for proper operation, the body of the nMOSFETs (Pin 7) must be connected to the MNV (–5V, in our example), indicating that M_3 has

$$v_{SB3} = v_I - V_{SS} = v_I + 5 \text{ V}$$

Consequently, V_{n3} will be a function of v_I itself, as per Eq. (1). Also, for $E = \text{HIGH} = 5 \text{ V}$, M_3 has

$$v_{GS3} = E - v_I = 5 \text{ V} - v_I$$

The channel resistance r_{DSn} of the nMOSFET M_3 is smallest when v_I is near the low-end of its range (–5 V), where $v_{SB3} = 0$ and $v_{GS3} = 10 \text{ V}$. As v_I is increased from –5 V, v_{GS3} increases, and so does V_{n3}, by Eq. (1); at the same time, v_{GS3} decreases. The combined effect is an undesirable increase in r_{DSn}, by Eq. (5). In fact, for v_I sufficiently positive to make $v_{GS3} = V_{n3}$, M_3 will turn off, operating as an open switch when in fact it should be closed! Increasing v_I further will simply continue to keep M_3 in cutoff. The behavior of r_{DSn} as a function of v_I is depicted in Fig. 12.

The above drawback is overcome by using a pMOSFET (M_6 in Fig. 11) in parallel with the nMOSFET, and driving its gate in anti-phase with that of the nMOSFET. The inversion of the control signal E is accomplished by the inverter made up of M_1 and M_2. Recall that for proper operation, the body of the pMOSFETs (Pin 14) must be connected to the MPV (+5V, in our example), indicating that M_6 has

$$v_{BS6} = V_{DD} - v_I = 5 \text{ V} - v_I$$

Moreover, for $E = \text{HIGH} = +5 \text{ V}$, we have $\overline{E} = \text{LOW} = -5 \text{ V}$, so

$$v_{SG6} = v_I - \overline{E} = v_I + 5 \text{ V}$$

By dual reasoning, we observe that the channel resistance r_{SDp} of the pMOSFET M_6 is smallest when v_I is near the high-end of its range (+5 V), where $v_{BS6} = 0$ and $v_{SG6} = 10 \text{ V}$. As v_I is decreased from +5 V, v_{BS6} increases, and so does $|V_{tp}|$, by Eq. (6); at the same time, v_{SG6} decreases, and the overall effect is an

Fig. 12 – The overall transmission-gate resistance r_{SW}, as well as the individual MOSFET resistances r_{DSn} and r_{SDp}, as functions of v_I.

© 2002 Sergio Franco

Engr 453 – Lab #2 – Page 12 of 13
undesirable increase in r_{SDp} by Eq. (10). In fact, for v_I sufficiently negative to make $v_{SG6} = |V_{ge}|$, M_6 will go in cutoff, operating as an open switch when in fact it should be closed! Decreasing v_I further will simply continue to keep M_6 in cutoff. The behavior of r_{SDp} as a function of v_I is also depicted in Fig. 12. The pMOSFET will provide low-resistance over the portion of the v_I range over which the nMOSFET fails, and vice-versa. Even though the individual FETs provide low channel resistance only over limited ranges of v_I, as a team they provide low overall resistance over the entire v_I range!

PC14: Using the values of k, V_{do}, and γ found in Lab #1, calculate the n-channel resistance r_{DSn} as well as the p-channel resistance r_{SDp} for $v_I = -5$ V, -4 V, ..., 0 V, ..., $+4$ V, $+5$ V. Hence, plot r_{DSn}, r_{SDp} as well as the overall switch resistance $r_{SW} = r_{DSn}/r_{SDp}$ over the range -5 V $\leq v_I \leq +5$ V. Comment on your findings. Hint: Use Eqs. (1), (5), (6), (10), and Eqs. (14) through (17).

M15: With power (both V_{DD} and V_{SS}) off, assemble the transmission gate of Fig. 11. Next, adjust your waveform generator so that v_I is a 1-kHZ sine-wave alternating between -3 V and $+3$ V (use Ch. 1 of the oscilloscope, 1 V/div, DC). Now, apply power, connect your generator to the transmission gate, and while monitoring its output with the oscilloscope (use Ch. 2, 1 V/div, DC), verify that with $E = +5$ V your circuit yields $v_O \cong v_I$, but with $E = -5$ V it yields $v_O = 0$ V. Remark: You will observe that v_O is slightly smaller than v_I. Explain why, and use the results of step PC12 to justify quantitatively.

M16: Disconnect the signal generator and turn power off. Next, disconnect M_6 (by lifting either the wire connecting Pin 11 or that connecting Pin 12) to appreciate its effect upon overall circuit behavior. Finally, reapply power, reconnect the signal generator, and with $E = +5$ V, observe v_O as you gradually increase the amplitude of v_I from ± 3 V all the way to the full-scale value of ± 5 V. Record the output waveform, and justify quantitatively its distortion during the positive half-cycle.

M17: Lower the signal generator’s amplitude back to ± 3 V, disconnect it from your circuit, and turn power off. Next, reconnect M_6 and disconnect M_3 (by lifting either the wire connecting Pin 4 or that connecting Pin 5) to appreciate its effect upon overall circuit behavior. Finally, reapply power, reconnect the signal generator, and with $E = +5$ V, observe v_O as you gradually increase the amplitude of v_I from ± 3 V all the way to the full-scale value of ± 5 V. Record the output waveform, and justify quantitatively its distortion during the negative half-cycle. Once finished, remove the signal generator, and turn power off.

S18: Using the values of k, V_{do}, and γ found in Lab #1, simulate the circuits of Steps M13, M14, and M15. Compare with the actual circuits, account for any differences.