Objective:
To characterize n-channel and p-channel enhancement MOSFETs, both statically and dynamically. To perform PSpice simulations, and to compare with experimental observations.

Components:
1 × CD4007UB MOSFET Array, 2 × 0.1 µF capacitors, 3 × 22 pF capacitors, 1 × 10 kΩ potentiometer, and resistors: 2 × 10 kΩ, and 1 × 1 MΩ, (all 5%, ¼ W).

Instrumentation:
A bench power supply, a digital multi-meter, and a dual-trace oscilloscope with X10 probes.

PART I – THEORETICAL BACKGROUND

Figure 1 shows the circuit symbols of the n-channel enhancement MOSFET (nMOSFET) and the p-channel enhancement MOSFET (pMOSFET), the devices we are going to characterize in this lab. As we know, the current directions and voltage polarities of one device are opposite to those of the other. In fact, the nMOSFET and the pMOSFET are said to be complementary to each other, and when they are fabricated on the same substrate, the resulting technology is referred to as complementary MOS (CMOS for short). MOSFETs possess a fourth terminal called the body (B), which is internally tied to the substrate. Though this terminal is not used on purpose, it must be properly biased to prevent unintentional effects.

The nMOSFET:
When an nMOSFET is biased in the pinchoff region, also called saturation region or active region, and characterized by the conditions

\[
\begin{align*}
v_{GS} & \geq V_t \\
v_{DS} & \geq v_{GS} - V_t
\end{align*}
\]

with \(v_{GS} \geq V_t \), the drain current \(i_D \) depends on the applied gate-source voltage \(v_{GS} \) and the operating drain-source voltage \(v_{DS} \) as

\[
i_D = \text{sat}(v_{GS} - V_t)
\]

n-channel Enhancement MOSFET

\[
v_{SG} \quad + \quad v_{DS} \quad +
\]

p-channel Enhancement MOSFET

\[
+ \quad v_{GS} \quad - \quad - \quad v_{SD} \quad +
\]

Fig. 1 – Circuit symbols, current directions, and voltage polarities for MOSFETs.
\[i_D = \frac{k_n}{2} (v_{GS} - V_m)^2 (1 + \lambda_n v_{DS}) \]

(2)

where

- \(k_n \) is a scale factor known as the device transconductance parameter, in A/V^2.
- \(V_m \), known as the threshold voltage, is the value of \(v_{GS} \) at which the MOSFET starts conducting.
- \(\lambda_n \) is the channel-length modulation parameter, in V\(^{-1}\).

For a low-power nMOSFET, \(k_n \) is typically in the range of \(10^2 \mu\text{A/V}^2 \), \(V_m \) is in the range of 100 V, and \(\lambda_n \) is on the order of \(10^{-2} \text{ V}^{-1} \). Note that the extrapolated value of \(i_D \) in the limit \(v_{DS} \to 0 \) is \(i_D = (k_n/2)(v_{GS} - V_m)^2 \).

The device transconductance parameter \(k_n \) depends on device geometry as

\[k_n = k'_n \left(\frac{W_n}{L_n} \right) \]

(3)

where

- \(k'_n \) (also in A/V^2) is the process transconductance parameter, and \(k'_n = \mu_n C_{ox} \), where \(\mu_n \) is the electron mobility and \(C_{ox} \) is the gate oxide capacitance per unit area.
- \(W_n \) and \(L_n \) (both in \(\mu\text{m} \)) are the channel width and channel length of the nMOSFET.

The threshold voltage \(V_m \) depends on the body bias voltage \(V_{SB} \) as

\[V_m = V_{m0} + \gamma_n \left(\sqrt{2|\phi_p| + V_{SB}} - \sqrt{2|\phi_p|} \right) \]

(4)

where

- \(V_{m0} \) is the threshold voltage in the absence of any body bias (\(V_{SB} = 0 \))
- \(\gamma_n \) is the body-effect coefficient, typically near 0.5 V\(^{1/2}\)
- \(\phi_p \) is the equilibrium electrostatic potential of the p-type body, typically \(-0.3 \text{ V} \).

Recall that in the nMOSFET the body forms a \(pn \) junction both with the source and the drain regions, with \(B \) acting as the anode. To avoid inadvertently turning on either of these junctions, the body of the nMOSFET must never be biased more positive than the source, that is, we must always have \(V_{SB} \geq 0 \), or, equivalently,

\[V_B \leq V_S \]

(5)

To satisfy this condition at all times, the body of the nMOSFET is biased at the most negative voltage (MNV) in the circuit.

The pMOSFET:

Similar considerations hold for the pMOSFET, provided we reverse all current directions and voltage polarities. Thus, the pinchoff-region conditions of Eq. (1) become, for the pMOSFET,

\[v_{SG} \geq -V_p \]

(6a)

\[v_{SD} \geq v_{SG} + V_p \]

(6b)
In this region, Eq. (2) is now rephrased as

\[i_D = \frac{k_p}{2} \left(v_{SG} + v_{tp} \right)^2 \left(1 + \lambda_p v_{SD} \right) \] \hspace{1cm} (7)

where

\[k_p = k'_p \frac{W}{L_p} \] \hspace{1cm} (8)

is again the device transconductance parameter, in A/V^2, and \(W_p \) and \(L_p \) (both in \(\mu m \)) are the channel width and channel length of the pMOSFET. The quantity \(k'_p = \mu_p C_{ox} \) is again called the process transconductance parameter, with \(\mu_p \) being the hole mobility and \(C_{ox} \) the gate oxide capacitance per unit area. Holes are less mobile than electrons, typically \(\mu_p \approx 0.4 \mu_n \). In CMOS technology the value of \(C_{ox} \) is the same for \(n \) and \(p \) channel devices, so we typically have \(k'_p \approx 0.4 k'_n \).

Equation (4) becomes, for the pMOSFET,

\[V_{tp} = V_{tp0} - \gamma_p \left(\sqrt{2\phi_n + V_{BS}} - \sqrt{2\phi_n} \right) \] \hspace{1cm} (9)

where

- \(V_{tp0} \) is the threshold voltage in the absence of any body bias (\(V_{BS} = 0 \))
- \(\gamma_p \) is the body-effect coefficient, typically near 0.5 V^{1/2}
- \(\phi_n \) is the equilibrium electrostatic potential of the \(n \)-type body, typically +0.3 V.

Recall that in the pMOSFET the body forms an \(np \) junction both with the source and the drain regions, with \(B \) acting as the cathode. To avoid inadvertently turning on either of these junctions, the body of the nMOSFET must never be biased more negative than the source, that is, we must always have \(V_{BS} \geq 0 \), or, equivalently,

\[V_B \geq V_S \] \hspace{1cm} (10)

To satisfy this condition at all times, the body of the nMOSFET is biased at the most positive voltage (MPV) in the circuit.

PSpice Simulations:

MOSFET circuits are readily simulated using PSpice. In the PSpice circuit of Fig. 2 we are using a homebrew nMOSFET called 453nFET to display the \(i_D \) versus \(v_{GS} \) characteristic in the so called diode mode of operation (\(G \) and \(D \) tied together). This device has been created by renaming and suitably editing the PSpice Model of one of the MOSFETs available in the PSpice Library. This has been done first by clicking the device to select it, then by clicking Edit → PSpice Model to change the values of its parameters. The result is the following model statement:

```plaintext
.model 301nMOSFET NMOS(W=10u L=5u kp=50u Vto=1.5 lambda=0.05)
```

The characteristic, expressed by Eq. (2) and shown in Fig. 3a, is reminiscent of a diode curve – hence, the name.

It is interesting to note that if we plot the \(i-v \) characteristic of a diode-connected MOSFET on a square-root-versus-linear system of axes, the resulting curve becomes a straight line. Specifically, if we
plot Eq. (2) on an x-y plane with

$$x = v_{GS} = v_{DS}$$

(11a)

and

$$y = \frac{i_D}{\sqrt{1 + \lambda_n x}}$$

(11b)

then the characteristic becomes $y = \sqrt{k_n/2}(x - V_{tn})$, that is, a straight line with slope $= \sqrt{k_n/2}$ and x-axis intercept at V_{tn}. This is illustrated in Fig. 3b for our homebrew nMOSFET. We shall find this feature quite convenient from an experimental standpoint.

Fig. 2 – PSpice circuit to plot the i-v characteristic of a homebrew nMOSFET operated in the diode mode (G and D tied together, and B and S tied together).

Fig. 3 – The i-v characteristic of the diode-connected nMOSFET of Fig. 2.

- $W_n = 10 \mu$m
- $L_n = 5 \mu$m
- $k' = 50 \mu$A/V2
- $V_{tn} = 1.5$ V
- $\lambda_n = 0.05$ V$^{-1}$
An insightful alternative for illustrating nMOSFET operation is by plotting i_D versus v_{DS} for different values of v_{GS}. The PSpice circuit of Fig. 4 generates such a plot for incremental steps in V_{GS} of 0.5 V each. The resulting family of curves, shown in Fig. 5, reveals three regions of operation:

- For $v_{GS} \leq V_{tn}$ (= 1.5 V) we get $i_D = 0$, indicating that the nMOSFET is operating in the cutoff (CO) region. In this region both the GS and DS ports act as open circuits.
- For $v_{GS} > V_{tn}$, the nMOSFET is on. The region corresponding to $v_{DS} > V_{GS} - V_{in}$ is called the pinchoff (PO), or saturation, or active region. As we know, in this region Eq. (2) holds, which we repeat here

$$i_D = \frac{k_n}{2} (v_{GS} - V_{in})^2 (1 + \lambda_n v_{DS}) \quad \text{for } v_{DS} > V_{GS} - V_{in}$$

(12)

In the PO region, the i_D versus v_{DS} curves are almost horizontal, indicating current-source behavior by the DS port there. Moreover, if we project the PO curves to the left, they all converge to the same point on the v_{DS} axis. This point is located at $-1/\lambda_n$ V. Note that when operated in the diode mode,

![Fig. 4 - PSpice circuit to plot i_D versus v_{DS} for different values of V_{GS}.](image)

![Fig. 5 – Illustrating the three regions of operation of an nMOSFET.](image)
the MOSFET has \(v_{DS} = v_{GS} \), which obviously satisfies \(v_{DS} > V_{GS} - V_{th} \), indicating PO operation when the device is on.

- The region corresponding to \(v_{DS} < V_{GS} - V_{t} \) is called the ohmic (\(\Omega \)), or triode region. In this region the channel behaves as a nonlinear resistor, and \(i_{D} \) takes on the form

\[
i_D = k_n \left((v_{GS} - V_m) v_{DS} - \frac{v_{DS}^2}{2} \right) \left(1 + \lambda_n v_{DS} \right)
\]

for \(v_{DS} < V_{GS} - V_m \) \((13) \)

For small values of \(v_{DS} \), we can ignore \(v_{DS}^2/2 \) as well as \(\lambda_n v_{DS} (\lambda_n \ll 1 \text{ V}^{-1}) \), and approximate

\[
i_D \approx \frac{1}{r_{DS}} v_{DS}
\]

where

\[
r_D = \frac{1}{k_n (V_{GS} - V_m)}
\]

represents the channel resistance in the limit \(v_{DS} \to 0 \). Such a resistance is controlled by \(V_{GS} \), indicating voltage-controlled resistance behavior near the origin. As shown in Fig. 5, the borderline between the PO and the \(\Omega \) regions is a locus of points forming a parabola.

You can simulate the above circuits on your own by downloading the appropriate files from the Web. To this end, go to http://online.sfsu.edu/~sfranco/CoursesAndLabs/Labs/453Labs.html, and once there, click on PSpice Examples. Then, follow the instructions contained in the Readme file.

PART II – EXPERIMENTAL part

The purpose of this laboratory is to characterize the CD4007UB MOSFET Array, consisting of three enhancement nMOSFETs (\(M_1, M_3, \) and \(M_5 \)) and three enhancement pMOSFETs (\(M_2, M_4, \) and \(M_6 \)) interconnected as in Fig. 6. An important advantage of monolithic fabrication is that devices sharing the same process and geometries tend to exhibit identical characteristics, a feature referred to as matching.

Fig. 6 – The CD4007 MOSFET Array.
In our case we say that \(M_1, M_3, \) and \(M_5 \) are matched, and, separately, that \(M_2, M_4, \) and \(M_6 \) are matched.

As mentioned, the body of the three nMOSFETs (pin 7), which is p-type, must always be connected to the most negative voltage (MNV) in the circuit to avoid inadvertently turning on parasitic junctions. Likewise, the body of the three pMOSFETs (pin 14), which is n-type, must always be connected to the most positive voltage (MPV) in the circuit. Failure to respect these constraints may invalidate all measurements taken.

The CD4007 is a delicate device. To avoid damaging it, make sure that you always turn power off before making any circuit changes, and that before reapplying power, each lab partner checks separately that the circuit has been wired correctly. Also, refer to the Appendix 1 for useful tips on how to wire proto-board circuits. Though the tips are given for an op amp circuit example, similar precautions are generally necessary for any other type of IC.

The hand calculations and PSpice simulations that you will perform in this and the following lab rely on the measurements taken for the particular CD4007 sample, so if you are careless and end up damaging it, you’ll have to perform each measurement all over again! Just in case you wish to check whether the device is still in working condition or not, you may want to pre-wire in a separate area of your proto-board the circuit of Fig. 14, which uses all transistors to implement an oscillator. When in doubt, you may want to transfer your CD4007 sample there and check with the oscilloscope whether it still oscillates. This is not an absolute guarantee, but at least it gives a reasonable indication.

You are encouraged to compare the data you are measuring on your particular sample against those reported in the data sheets, which are typical in that they were obtained by averaging over a large number of samples. The data sheets can readily be downloaded from the Web (for instance, by visiting http://www.google.com and searching for CD4007UB or variants thereof.)

Henceforth, steps shall be identified by letters as follows: C for calculations, M for measurements, P for pre-lab preparations, and S for Spice simulations.

Finding \(\lambda_n \) and \(\lambda_p \):

MC1: We use the circuits of Fig. 7 to find \(\lambda_n \) and \(\lambda_p \). Mark one of the CD4007 ICs (the other is a spare).

![Test circuits to find \(\lambda_n \) and \(\lambda_p \), respectively.](image)

© 2002 Sergio Franco

Engr 453 – Lab #1 – Page 7 of 13
Turning first to the nMOSFET, assemble the circuit of Fig. 7a with power off (for R_D use $2 \times 10 \, k\Omega$ resistors in parallel). Using your multi-meter as a digital current meter (DCM), insert it in series between R_D and the drain D, as shown. Apply power and adjust the potentiometer for $I_D = 1 \, mA$. With reference to Fig. 8, this will bias M_1 at the operating point $Q(I_D, V_{DS}) = Q(1 \, mA, 5 \, V)$. Now short out R_D with a wire to change the operating point from Q to Q' with $\Delta V_{DS} = 5 \, V$, and measure the corresponding change ΔI_D. Expect the latter to be small, so use as many digits as your ammeter will allow. Finally, find $r_o = \Delta V_{DS}/\Delta I_D$ and $\lambda_n = 1/(r_o I_D - V_{DS})$. Are your values typical?

Note: All your data will be afflicted by measurement uncertainties, so they must be expressed in the form $X \pm \Delta X$ (e.g. $\lambda_n = 0.045 \pm 0.002 \, V^{-1}$).

MC2: Repeat Step MC1 for the pMOSFET of Fig. 7b, except that you now find your parameters as $r_o = \Delta V_{SD}/\Delta I_D$, and $\lambda_p = 1/(r_o I_D - V_{SD})$. Again, are your values typical? How do their magnitudes compare with those of the nMOSFET of Step MC1?

Finding $k_n, V_{tn0}, k_p,$ and $V_{tp0}:$

M3: We use the circuits of Fig. 9 to find $k_n, V_{tn0}, k_p,$ and V_{tp0}. Turning first to the nMOSFET, assemble

![Fig. 9 – Test circuits to find $k_n, V_{tn0}, k_p,$ and V_{tp0}](image-url)
the circuit of Fig. 9a with the DCM in series with the drain D. Obtain v from one of your variable power and measure and record i for $v = 0$ V, 1 V, 2 V, 3 V, 4 V, and 5 V.

C4: Plot the data of Step M3 on x-y paper, with $x = v$ and with $y = \sqrt{i/(1 + \lambda_n x)}$, using the value of λ_n found in Step MC1. Hence, find the best fit straight line, determine its slope s, and obtain $k_n = 2s^2$. Moreover, obtain V_{tn} as the value of x where your line intercepts the x-axis. Is your value typical?

M5: Repeat Step M3 for the pMOSFET of Fig. 9b.

C6: Plot the data of Step M5 on x-y paper, with $x = v$ and with $y = \sqrt{i/(1 + \lambda_p x)}$, using the value of λ_p found in Step MC2. Hence, find the best fit straight line, determine its slope s, and obtain $k_p = 2s^2$. Moreover, obtain V_{tp} as the negative of the value of x where your line intercepts the x-axis. Is your value typical? How does it compare with that of the nMOSFET?

Finding γ_n and γ_p:
We use the circuits of Fig. 10 to find γ_n and γ_p. Turning first to the nMOSFET, we observe that the function of R is to switch the substrate voltage V_{SB} from 0 V to -5 V, and thus change the threshold voltage from V_{tn0} to $V_{tn}(V_{SB} = 5$ V). We then exploit this change to indirectly find γ_n via Eq. (4). The reason for using R instead of a plain wire is to limit the substrate current in case of wiring errors, and thus protect the IC against possible destruction.

MC7: With power off, assemble the circuit of Fig. 10a, making sure that there is no other connecting

Fig. 10 – Test circuits to find γ_n and γ_p.

© 2002 Sergio Franco

Engr 453 – Lab #1 – Page 9 of 13
wire left from the previous test circuits, particularly at pin 14. Next, apply power, and record first the
DCM reading \(I_0 \) with \(R \) switched to ground \((V_{SB} = 0 \text{ V})\), then the DCM reading \(I_1 \) with \(R \) switched to \(-5 \text{ V} \) \((V_{SB} = 5 \text{ V})\). Finally, calculate the threshold voltage change

\[
V_{tn} - V_{tn_0} = (5 - V_{tn_0}) \times \left(1 - \sqrt{I_1 / I_0}\right)
\]

(15a)

and, hence, the body-effect coefficient

\[
\gamma_n = \frac{V_{tn} - V_{tn_0}}{\sqrt{2}\phi_n + 5 - \sqrt{2}\phi_n}
\]

(15b)

where you are to assume \(\phi_n = -0.3 \text{ V} \). Is your finding typical?

MC8: Turn power off, remove all wires (particularly the one at pin 7), and assemble the circuit of Fig.
10b. Next, apply power, and record first the DCM reading \(I_0 \) with \(R \) switched to ground \((V_{BS} = 0 \text{ V})\), then the DCM reading \(I_1 \) with \(R \) switched to \(+5 \text{ V} \) \((V_{BS} = 5 \text{ V})\). Finally, calculate the threshold voltage change

\[
|V_{q} - V_{q0}| = (5 - |V_{q0}|) \times \left(1 - \sqrt{I_1 / I_0}\right)
\]

(16a)

an, hence, the body-effect coefficient

\[
\gamma_p = \frac{|V_{q} - V_{q0}|}{\sqrt{2}\phi_p + 5 - \sqrt{2}\phi_p}
\]

(16b)

where you are to assume \(\phi_p = 0.3 \text{ V} \). Is your finding typical?

Summarize your findings by tabulating \(k_n, V_{tn_0}, \lambda_n, \gamma_n \), and \(k_p, V_{q0}, \lambda_p, \gamma_p \). Express all data in the
form \(X \pm \Delta X \), as usual

S9: Use PSpice to display the \(i_D-v_{DS} \) characteristics of your \(n\text{MOSFET} \), as well as the \(i_D-v_{SD} \) characteristics
of your \(p\text{MOSFET} \). Do it both for the case of 0-V and 5-V body bias, compare, and comment.

Transistor Mismatch:
Because of unavoidable fabrication process variations, there is generally a certain degree of mismatch
among the three \(n\text{MOSFETS} \), as well as mismatch among the three \(p\text{MOSFETS} \). A thorough assessment

![Fig. 11 – Circuit to measure the offset voltages of the \(n\text{MOSFETs} \).](image)
of the mismatches would require repeating all measurements also for the remaining transistors, a lengthy task. Here we shall limit ourselves to investigating mismatches only for the case of diode-mode operation, which is important in differential amplification such as with memory sense amplifiers. Specifically, we shall force the same current I_D through each transistor, and measure the resulting voltage V. Any mismatches in the values of k, V_t, and λ will cumulatively result in mismatched values of V_{DS}.

The difference between the voltages of a particular transistor pair is called the offset voltage.

MC10: For transistor M_1 of Fig. 11, adjust V_{DD} for $I_D = 1$ mA, and measure the corresponding value of V_{DS} (use as many digits as your DC voltmeter will allow). Repeat for transistor M_3, and then for transistor M_5. What is the offset voltage between M_3 and M_1? Between M_5 and M_1?

MC11: For transistor M_2 of Fig. 12, adjust V_{DD} for $I_D = 1$ mA, and measure the corresponding value of V_{SD} (use as many digits as your DC voltmeter will allow). Repeat for transistor M_4, and then for transistor M_6. What is the offset voltage between M_4 and M_2? Between M_6 and M_2? How do the offsets of the pMOSFETs compare with those of the nMOSFET?

Dynamic Characterization:
A MOSFET contains a variety of stray capacitances (gate-to-body, gate-to-source, gate-to-drain, drain-to-body, and source-to-body), whose effect is to limit the dynamics of the device. In digital applications, the main effect of limited transistor dynamics as well other parasitics associated with wiring, are the propagation delays of logic gates. We shall investigate this aspect using the basic CMOS inverter, which is the workhorse of digital systems.

Mercifully, the cumulative effect of all stray capacitances can be modeled with a single, total equivalent capacitance C_{eq} at the output node of the inverter, as depicted in Fig. 13a. The average propagation delay t_p of the inverter is then due to the limited current ability of its transistors to charge/discharge C_{eq} during output switching. Our next goal is to estimate the value of C_{eq}. It stands to reason to assume that t_p be proportional to C_{eq}, or

$$t_p = KC_{eq}$$ \hspace{1cm} (17)$$

where K is a suitable proportionality constant, in ns/pF. It is apparent that the higher the current drive capabilities of the transistors, the smaller the value of K. While t_p can be measured, K and C_{eq} are unknown. We thus need another equation, and this is provided by deliberately loading the inverter with an external capacitance C_{ext} of known value, as illustrated in Fig. 13b. The total output capacitance is now $C_{eq} + C_{ext}$, and this increases the propagation delay to the new value

$$t_{p(new)} = K(C_{eq} + C_{ext})$$ \hspace{1cm} (18)
which also can be measured. Eliminating K, we readily find

$$P_{eq ext} = -t_P$$

(19)

Once we know C_{eq}, we find $K = t_P/C_{eq}$.

An ingenious technique for measuring the average propagation delay t_P is to connect an odd number n of inverters in ring fashion, as illustrated in Fig. 14 for the case $n = 3$. The resulting circuit, known as a ring oscillator, will then automatically oscillate with a period that is easily found to be $T = 2nt_p$. After measuring T with the oscilloscope, we find $t_P = T/2n$.

M12: With power off, assemble the ring oscillator of Fig. 14. Apply power, and measure its period of oscillation T.
Warning: It is important to realize that connecting the probe to the output of any one of the inverters will add to the existing equivalent capacitance C_{eq} of that node also the capacitance C_p of the probe itself, thus increasing the actual period by an unknown error ΔT. Such an error may or may not be significant, depending on the case.

A simple way to find out is to connect also a second identical probe in parallel with the first, and observe the additional increase in the period, if any. If the circuit is linear, such an increase will be ΔT itself! Consequently, once we measure ΔT, we subtract it from our period reading to obtain a better estimate for the actual period value. For instance, if with one probe you measure a period of 55 ns, and with two probes you measure a period of 60 ns, then $\Delta T = 60 - 55 = 5$ ns, so the actual period is $T = 55 - \Delta T = 55 - 5 = 50$ ns.

It goes without saying that for this measurement it is critical to use low input capacitance probes, such as X10 probes as discussed in Appendix 2. Also, make sure that your probe is properly compensated, and keep all leads short to reduce the effect of stray capacitances!

MC13: With power off insert three 22-pF capacitors as shown in Fig. 15. Reapply power, and measure the new period $T_{(new)}$. Calculate the average propagation delay both with and without the 22-pF capacitors. Finally, estimate the values of C_{eq} and K using Eqs. (19) and (17). As usual, express all data in the form $X \pm \Delta X$.

MC14: Repeat Steps M12 and MC13, but with the supply voltage changed from 5 V to 10 V. Justify any changes in the values of C_{eq} and K.

S15: Using the various transistor parameters measured so far, perform a PSpice simulation of the ring counter of Fig.14, and display the voltage waveform at the output of each inverter. Beware that since PSpice assumes default values of zero for all capacitances, you must deliberately include a capacitance C_{eq} at the output of each inverter. Finally, compare with the observations and measurements in the lab, and account for any possible differences.

![Fig. 15 – Ring oscillator with deliberate capacitive loading.](image-url)