Electric Circuits Fundamentals

Sergio Franco, *San Francisco State University*

Oxford University Press, 1995

Detailed Table of Contents

FOREWORD, by Adel S. Sedra

PREFACE: Pedagogy and Approach, Content, Course Options, Supplements, Acknowledgments

CONTENTS

1 BASIC CONCEPTS

1.1 **Units and Notation**: SI Units, Unit Prefixes, Consistent Sets of Units, Signal Notation

1.2 **Electric Quantities**: Charge, Potential Energy, Voltage, Relation between Electric Field and Potential, Current, Power, Active and Passive Sign Convention

1.4 **Electric Circuits**: Circuit Analysis and Synthesis, Branches, Nodes, Reference Node, Loops and Meshes, Series and Parallel Connections

1.5 **Kirchhoff’s Laws**: Kirchhoff’s Current Law (KCL), Kirchhoff’s Voltage Law (KVL), Power Conservation

1.6 **Circuit Elements**: $i-v$ Characteristic, $v-i$ Characteristic Straight Line Characteristic

1.7 **Sources**: Voltage Sources, Current Sources, A Hydraulic Analogy, Dependent Sources, Voltage Sources in Series, Current Sources in Parallel

Summary

Problems

2 RESISTIVE CIRCUITS

2.1 **Resistance**: Ohm’s Law, $i-v$ Characteristic, Conductance, Power Dissipation, Conduction, Practical Resistors and Potentiometers

2.2 **Series/Parallel Resistance Combinations**: Resistances in Series, Resistances in Parallel, Series/Parallel Resistance Reductions, The Proportionality Analysis Procedure

2.3 **Voltage and Current Dividers**: The Voltage Divider, Gain, The Current Divider, Applying Dividers to Circuit Analysis

2.4 **Resistive Bridges and Ladders**: The Resistive Bridge, Resistive Ladders, $R-2R$ Ladders

2.5 **Practical Sources and Loading**: Practical Voltage Source Model, Practical Current Source Model, The Loading Effect, Operating Limits

2.6 **Instrumentation and Measurement**: Voltage and Current Measurements, Loading, Multi-meters, DC and AC Multimeter Measurements, Oscilloscopes

Summary

Problems

3 CIRCUIT ANALYSIS TECHNIQUES

3.1 **Circuit Solution by Inspection**: Resistive Ladder Design, DC Biasing

3.2 **Nodal Analysis**: The Node Method, Checking, Supernodes

3.3 **Loop Analysis**: The Loop Method, Checking, Supermeshes

3.4 **Linearity and Superposition**: The Superposition Principle, Concluding Observation

3.5 **Source Transformations**: Analysis Techniques Comparison

Summary
Problems

4 CIRCUIT THEOREMS AND POWER CALCULATIONS
4.1 One-Ports: i-v Characteristics of Linear One-ports, Finding Req: Method 1, Finding Req: Method 2, Remark
4.2 Circuit Theorems: Thevenin’s Theorem, Norton’s Theorem, Thevenin and Norton Comparison, Concluding Remarks
4.3 Nonlinear Circuit Elements: Iterative Solutions, Graphical Analysis
4.4 Power Calculations: Average Power, RMS Values, AC Multimeters, Maximum Power Transfer, Efficiency
4.5 Circuit Analysis Using SPICE: Finding Thevenin/Norton Equivalents with SPICE, Nonlinear Resistors
Summary
Problems

5 TRANSFORMERS AND AMPLIFIERS
5.1 Dependent Sources: Resistance Transformation, Transistor Modeling
5.2 Circuit Analysis with Dependent Sources: Nodal and Loop Analysis, Thevenin and Norton Equivalents, Concluding Remarks
5.3 The Transformer: Circuit Model of the Ideal Transformer, Power Transmission, Resistance Transformation, Practical Transformers
5.4 Amplifiers: Voltage Amplifier Model, Current Amplifier Model, Transresistance and Transconductance Amps, Power Gain
5.5 Circuit Analysis Using SPICE: Voltage-Controlled Sources, Current-Controlled Sources, The Ideal Transformer
Summary
Problems

6 OPERATIONAL AMPLIFIERS
6.2 Basic Op Amp Configurations: The Noninverting Amplifier, The Voltage Follower, The Inverting Amplifier
6.4 Summing and Difference Amplifiers: The Summing Amplifier, The Difference Amplifier, The Instrumentation Amplifier
6.5 Transresistance, Transconductance, and Current Amplifiers: Transresistance Amplifiers, Transconductance Amplifiers, Current Amplifiers
6.6 Op Amp Circuit Analysis Using SPICE: Transfer Characteristic, Subcircuits
Summary
Problems

7 ENERGY STORAGE ELEMENTS
7.1 Capacitance: Linear Capacitances, i-v Characteristic, Uniform Charge/Discharge, Time Diagrams, v-i Characteristic, Capacitive Energy, A Water Tank Analogy, Capacitances in Parallel, Capacitances in Series, Practical Capacitors
7.3 Natural Response of RC and RL Circuits: First-Order Differential Equations, The Source-Free or Natural Response, The Time Constant t, Decay Times, The s Plane
7.4 Responses to DC and AC Forcing Functions: General Solution to the Differential Equation, Response to a DC Forcing Function, The Transient and DC Steady-State Components, Response to an AC Forcing Function, The Transient and AC Steady-State Components, Concluding Observations
Summary
8 TRANSPORT RESPONSE OF FIRST-ORDER CIRCUITS

8.2 Transients in First-Order Networks: Capacitive Examples, Inductive Examples

8.3 Step, Pulse, and Pulse-Train Responses: Step Response of R-C and L-R Circuits, Pulse Response of R-C and L-R Circuits, Pulse-Train Response of R-C and L-R Circuits, Step Response of C-R and R-L Circuits, Pulse-Train Response of C-R and R-L Circuits

Summary

Problems

9 TRANSPORT RESPONSE OF SECOND-ORDER CIRCUITS

9.2 Transient Response of Second-Order Circuits

9.3 Step Response of Second-Order Circuits: Overdamped Response, Critically Damped Response, Underdamped Response, Overshoot, Settling Time

9.5 Transient Analysis Using SPICE

Summary

Problems

10 AC RESPONSE

10.1 Sinusoids and Phasors: General Expression for an AC Signal, Phase Difference, Phasors

Summary

Problems

11 AC CIRCUIT ANALYSIS

11.1 Phasor Algebra: Magnitude Scaling, Polarity Inversion, The j Operator, Differentiation, Integration, The Complex Plane, Rectangular Coordinates, Polar Coordinates, Addition and Subtraction, Graphical Addition and Subtraction, Useful Approximations, Exponential Form, Multiplication and Division, Complex Conjugate, Using Phasors to Solve Differential Equations

11.2 AC Impedance: Generalized Ohm’s Law, Impedance and Admittance, Limiting Cases for the Element Impedances, Series/Parallel Combinations, AC Resistance and Reactance, AC Conductance and Susceptance, RC, RL, and LC Pairs

11.3 Frequency-Domain Analysis: AC Dividers, The Proportionality Analysis Procedure, Nodal and Loop Analysis, Finding the Equivalent Impedance of an AC Port, Thevenin and Norton Equivalents, Concluding Remarks

11.4 First-Order Op Amp AC Circuit: Integrators, the Differentiator, Low-Pass Circuit with Gain, High-Pass Circuit with Gain, Capacitance Multiplication, Inductance Simulation, Concluding Remarks

11.5 AC Analysis Using SPICE: Independent Ac Sources, The .AC Statement, The .PRINT AC and .PLOT AC Statements

Summary

Problems
16.3 **Operational Transforms:** Linearity, Differentiation, Integration, Time Shifting, Frequency Shifting, Scaling, Convolution, Periodic Functions, Initial and Final Values

16.4 **The Inverse Laplace Transform:** Real and Distinct Poles, Complex Conjugate Poles, Repeated Real Poles, Repeated Complex Pole Pairs, Improper Rational Functions

16.5 **Application to Differential Equations:** The Forced and Natural Response Components, the Network Function $H(s)$

16.6 **Application to Circuit Analysis:** Circuit Element Models, Circuit Analysis Using Laplace Transforms

16.7 **Convolution:** Graphical Convolution, Numerical Convolution

Summary

Problems

17 **FOURIER ANALYSIS TECHNIQUES**

17.1 **The Fourier Series:** The Fourier Coefficients, The Power of a Periodic Signal, Mean Square Error

17.2 **The Effect of Shifting and Symmetry:** Shifting, Even and Odd Functions, Half-Wave Symmetry, Effect of Discontinuities

17.3 **Frequency Spectra and Filtering:** Frequency Spectra, Steady-State Response to a Periodic Signal, Input-Output Spectra, Filters

17.4 **The Exponential Fourier Series:** Power, Frequency Spectra

17.5 **The Fourier Transform:** Fourier Transform Pairs, Energy Density Spectrum

17.6 **Properties of the Fourier Transform:** Fourier Transform Properties, Operational Transforms, Relation to the Laplace Transform

17.7 **Fourier Transform Applications:** Comparing the Fourier and Laplace Approaches

17.8 **Fourier Techniques Using SPICE:** Fourier Synthesis, Fourier Analysis, Piecewise-Linear Waveforms

Summary

Problems

Appendix 2A: Standard Resistance Values

Appendix 3A: Solution of Simultaneous Linear Algebraic Equations: Gaussian Elimination, Cramer's Rule

Appendix 9A: Euler's Formula and the Undamped Response

Appendix 11A: Summary of Complex Algebra

Answers to Odd-Numbered Problems

Index