Money

1 What is Money?

We define money as the *medium of exchange* in the economy, i.e. a commodity or financial asset that is generally acceptable in exchange for goods and services. Currency which consists of coins and bank notes\(^1\) are a medium of exchange. Checking accounts can also be used as a medium of exchange, since a consumer can write a check in exchange for goods. Travelers checks are another example of money. There are other assets where it is not clear if they should be considered as money, for example savings accounts. A consumer can withdraw from a savings account and pay for goods, but the main purpose savings accounts is to store value not to serve as a medium of exchange.

Are credit cards considered a form of money? The answer is no. If you buy goods from a supermarket using a credit card, the credit card company will pay the shopkeeper today, from its checking account, and you will have an obligation to pay the credit card company when your credit card bill comes in. This obligation to the credit card company *does not represent money*. The money part of the transaction between you and the credit card company only comes into play when you pay your bill.

There are several definitions money aggregates:

1. **M1** - Measure of the U.S. money stock that consists of currency held by the public, travelers checks, demand deposits and other checkable deposits including NOW (negotiable order of withdrawal) and ATS (automatic transfer service) account balances and share draft account balances at credit unions.

2. **M2** - Measure of the U.S. money stock that consists of M1, certain overnight repurchase agreements and certain overnight Eurodollars, savings deposits (including money market deposit accounts), time deposits in amounts of less than $100,000 and balances in money market mutual funds (other than those restricted to institutional investors).

3. **M3** - Measure of the U.S. money stock that consists of M2, time deposits of $100,000 or more at all depository institutions, term repurchase agreements in amounts of $100,000 or more, certain term Eurodollars and balances in money market mutual funds restricted to institutional investors.

The most important monetary aggregate is M1 and is often referred to as the *money supply* in the economy.

\(^{1}\)Take a look at $1 bill, or any other U.S. paper money. It is called "Federal Reserve Note".
2 The Demand for Money

There are many theories that try to explain how the quantity of money that households want to hold is determined. Most of the modern theories are quite complicated and cannot be presented in this class. We will describe two theories here: (1) Quantity Theory of Money2, and (2) Money in the Utility Function.

2.1 Quantity Theory of Money

According to this theory, households want to hold money in proportion to the dollar value of goods produced in the economy. Let Y_t be the real GDP at time t and let P_t be the price level (GDP deflator). Thus, the nominal GDP is $P_t Y_t$. The demand for money according to this theory is given by

$$M_D^t = k_t \cdot P_t Y_t$$

(1)

where M^D is the demand for money and k_t is the propensity to hold money. Typically, $k_t < 1$ since each dollar can be used more than once every year, so if the households spend $P_t Y_t$ during year t, they need to keep only a fraction of their planned spending as money. In 2005 $k_t = 0.11$, which means that in 2005 households held money at the amount of 11% of the GDP. In other words, each dollar circulated 9 times during 2005 ($1/0.11 = 9$). We define the velocity of money as the average number of times a unit of currency circulates during the year. The velocity is denoted by V_t and defined as

$$V_t = \frac{P_t Y_t}{M^D_t}.$$

Thus, equation (1) can be written as

$$M^D_t V_t = P_t Y_t$$

(2)

Notice that $V_t = 1/k_t$. In equilibrium, the money demand (M^D_t) is equal to the money supply (M^S_t), and denoted by M_t and the above can be written as

$$M_t V_t = P_t Y_t$$

(3)

Equation (3) is called the quantity equation. It is important to realize that the quantity equation always holds for every economy in the world. This is simply because we define the velocity to be such that the above equation holds.

The quantity theory is silent about what determines the velocity V_t and real GDP Y_t, but nevertheless this equation is useful for relating money, inflation and real GDP. Divide equation (3) at time $t+1$ by the same equation at time t:

$$\frac{M_{t+1} V_{t+1}}{M_t V_t} = \frac{P_{t+1} Y_{t+1}}{P_t Y_t}$$

$$\left(1 + \hat{M}\right) \left(1 + \hat{V}\right) = \left(1 + \hat{P}\right) \left(1 + \hat{Y}\right)$$

(4)

2Sometimes called the Classical Theory.
where "hat" above a variable denotes its growth rate, for example \(\hat{M} = (M_{t+1} - M_t) / M_t \). Taking logs of equation (4) gives

\[
\ln(1 + \hat{M}) + \ln(1 + \hat{V}) = \ln(1 + \hat{P}) + \ln(1 + \hat{Y})
\]

For small growth rates the above is approximately

\[
\hat{M} + \hat{V} = \hat{P} + \hat{Y}
\]

(5)

Rearranging

\[
\hat{P} = \hat{M} + \hat{V} - \hat{Y}
\]

(6)

The growth rate of the price level is the definition of inflation rate: \(\pi = \hat{P} \). Equation (6) tells us that if velocity is constant (\(\hat{V} = 0 \)), then the inflation rate in the economy is approximately equal to the growth rate of money supply minus the growth rate of the real GDP

\[
\hat{P} = \hat{M} - \hat{Y}
\]

For example, suppose that during 2005 the money supply increased by 4% and the growth rate of real GDP was 1.5%, then the inflation rate must be 2.5%, if velocity did not change during 2005.

The next figure shows the velocity in the U.S. since 1960.

![Velocity of M1 in the U.S.](image)

Notice that velocity has increased during the time period in question (1959 to 2015), from 4 to 6. During the decade of 1995-2005 the velocity increased from 6 to 9, which is 50% increase. This means that each unit of currency circulates more times than it used to in the past. In other words, people economize on money holdings. In the next section we attempt to develop a theory of velocity. Notice that after 2007, we experience a decline in velocity of money, due to recession (from the velocity formula, we see that \(V_t = GDP_t / M_t \), and because of the recession the numerator experienced slow growth, while the denominator experiences fast growth). In other words, after 2007 we see that people are holding more money, but spending less.
Problem 1 During the period since the great recession, 2008 – 2015, the money supply M_1 more than doubled, but inflation rate was low. Using the quantity theory of money, explain how is that possible.

Solution 1 Using the quantity equation (3), we see that the price level at time t is given by:

$$P_t = \frac{M_t V_t}{Y_t}$$

Using actual data, the quantity of money increased by a factor of 2.1, while velocity changed by a factor of 0.58. At the same time, the real GDP increase by a factor of 1.1. Using these values, we obtain the new price level:

$$P_{2015} = \frac{(M_t \cdot 2.1) (V_t \cdot 0.58)}{(Y_t \cdot 1.1)} \approx p_t \cdot 1.11$$

That is, about 10% increase in the price level over the 8 year period of 2008 – 2015, or about 1.2% of annual inflation rate. Thus, fast money growth did not translate into high inflation due to the fact that people and banks were hoarding money, instead of spending.

The above result may seem as a contradiction to Milton Friedman’s empirical observation (1970) "Inflation is always and everywhere a monetary phenomenon...". Notice however that the statement does not say that any instance of money growth necessarily results in inflation. What the quote means is that any episode of high inflation must be fueled by rapid growth of the money supply. Indeed, Friedman studied the history of monetary policy and inflation in the U.S. and around the world, and it is true that any episode of high inflation was preceded and accompanied by a rapid expansion of the money supply.

2.2 Money in the Utility Function

This section attempts to develop a theory of velocity. Consumers derive utility from consumption C and real balances M/P. We can think of the later as liquidity services, or the purchasing power of the nominal money holdings. The opportunity cost of holding money is the nominal interest rate i. The consumer’s income is equal to the nominal GDP (PY). The consumer’s problem is therefore

$$\max_{C,M} \alpha \ln C + (1 - \alpha) \ln \left(\frac{M}{P}\right)$$

s.t.

$$PC + iM = PY$$

3The full quote is "Inflation is always and everywhere a monetary phenomenon in the sense that it is and can be produced only by a more rapid increase in the quantity of money than in output. ... A steady rate of monetary growth at a moderate level can provide a framework under which a country can have little inflation and much growth. It will not produce perfect stability; it will not produce heaven on earth; but it can make an important contribution to a stable economic society."

The Counter-Revolution in Monetary Theory (1970).
Now divide the budget constraint by the price level

$$\max_{C,M} \alpha \ln C + (1 - \alpha) \ln (M) - (1 - \alpha) \ln P$$

s.t.

$$C + \frac{M}{P} = Y$$

Notice that the last term in the utility function can be dropped because utility is invariant with respect to monotone transformations. Hence, the consumer’s problem is

$$\max_{C,M} \alpha \ln C + (1 - \alpha) \ln (M)$$

s.t.

$$C + \frac{M}{P} = Y$$

We know that when preferences are of the Cobb-Douglas form, the demand is

$$C = \alpha Y$$

$$M^D = \frac{(1 - \alpha)}{i} PY$$

The demand for money that we derived, is increasing GDP and decreasing in nominal interest rate - which represents the cost of holding money. Thus, according to this model the velocity is

$$V = \frac{i}{1 - \alpha}$$

This result makes intuitive sense: as interest rate goes up, the opportunity cost of holding money goes up and the households economize on money holdings. As a result, each piece of money is used more times during the year. The next figure shows the graphs of velocity and federal funds rate since 1959.
The dashed lines are polynomial trends (degree 6). As we see from the above figure, until early 80’s the trends of velocity and interest rates move in the same direction, as the model predicts. After 1981 however, the trends move in the opposite directions. The only way that our model can reconcile this observation is by increasing α. Recall that α is the weight of consumption in the utility function while $1 - \alpha$ is the weight on real balances in the utility function. Decline in $1 - \alpha$ means that liquidity services provided by the real balances are not as valuable as before. Our model cannot offer any explanation why this might happen though. One might conjecture that the sharp increase in velocity during 1995-2005 (50% increase) has something to do with innovations in the banking and payment system. These include ATM machines, electronic transfers, etc. Anything that allows faster payments and smaller average holdings of money will increase the velocity. For example, if households receive income every two weeks instead of every month, the average money holding will be lower and velocity higher. Notice that since 2007, velocity and interest rate are moving again in the same direction. This trend can be accounted in the above model by increasing $1 - \alpha$, (equivalently a decline in α), which means that people hold more money and spend less.

3 Money Supply

In this section we explain how the Federal Reserve System\(^4\) (FED for short) and the commercial banks create money. We define the Monetary Base (MB) as all the coins and paper money that is created by the FED. The Monetary Base is held partly as reserves (R) of the commercial banks and partly as currency in the hands of public (CU). Thus,

$$MB = R + CU$$

The money supply M consists of currency and checking deposits, which is the $M1$ money aggregate defined above. Thus

$$M = CU + D$$

The commercial banks are required to keep certain minimum percentage of deposits (D) as liquid reserves of cash and currency. This fraction is called the required reserve ratio and denoted by rd, where

$$rd = \frac{R}{D}$$

Suppose that consumers want to hold certain amount of cash, as a fraction of their deposits. Let this fraction (currency/deposits ratio) be cd, that is

$$cd = \frac{CU}{D}$$

Under these assumptions, M, D, R, and CU are all proportional to the monetary base.

$$\frac{M}{MB} = \frac{D + CU}{R + CU} = \frac{1 + cd}{rd + cd}$$

\(^4\)To learn about the history, the structure and the activities of the Federal Reserve System, visit http://www.federalreserveeducation.org/fed101/index.htm.
The last equality is obtained by dividing the numerator and the denominator by D. Similarly,

\[
\frac{D}{MB} = \frac{D}{R + CU} = \frac{1}{rd + cd}
\]

\[
\frac{R}{MB} = \frac{R}{R + CU} = \frac{rd}{rd + cd}
\]

\[
\frac{CU}{MB} = \frac{CU}{R + CU} = \frac{cd}{rd + cd}
\]

Thus

\[
\Delta M = \left(\frac{1 + cd}{rd + cd} \right) \Delta MB
\]

\[
\Delta D = \left(\frac{1}{rd + cd} \right) \Delta MB
\]

\[
\Delta R = \left(\frac{rd}{rd + cd} \right) \Delta MB
\]

\[
\Delta CU = \left(\frac{cd}{rd + cd} \right) \Delta MB
\]

The magnitude $mm = \left(\frac{1 + cd}{rd + cd} \right)$ is called the money multiplier, and it gives us the change in the money supply that results from 1 change in the monetary base.

Now we are ready to illustrate how the FED, together with the commercial banks, affects the money supply. The FED has several policy instruments, the most popular of which is open market operations. An open market operation is purchasing and selling government bonds. Every purchase of bonds by the FED increases the monetary base (injects money into the economy). Because of the partial reserve requirements, the commercial banks can lend some of the money received from the FED and thereby generating additional money. The FED can also alter the reserve requirement ratio, but it rarely does so. We will demonstrate the two modes of operation in the next example.
3.1 Example of Money Creation

Suppose the currency/deposit ratio that the public wants is 20% and the reserve requirement ratio is 10%. The following is a consolidated balance sheet of the commercial banks.

<table>
<thead>
<tr>
<th>Balance sheet of the commercial banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
</tr>
<tr>
<td>$R = 10$</td>
</tr>
<tr>
<td>$B_G = 25$</td>
</tr>
<tr>
<td>$L = 65$</td>
</tr>
<tr>
<td>Liabilities</td>
</tr>
<tr>
<td>$D = 100$</td>
</tr>
</tbody>
</table>

where R is the reserves, B_G government bonds, L is loans, and D is deposits. Notice that the balance sheet must always be balanced. Also observe that the banks conform to the reserve requirement and indeed $R/D = 0.1$.

1. Find the monetary base in this economy.

$$MB = CU + R$$

$$CU = cd \cdot D = 0.2 \cdot 100 = 20$$

$$R = 10$$

Thus

$$MB = 20 + 10 = 30$$

2. Find the money supply in this economy

$$M = CU + D = 20 + 100 = 120$$

3. Find the money multiplier in this economy.

$$mm = \left(\frac{1 + cd}{rd + cd} \right) = \left(\frac{1 + 0.2}{0.1 + 0.2} \right) = 4$$

4. Now suppose that the FED performs an open market operation and buys government bonds at the amount of 5. Find the new monetary base, the money supply and describe the new balance sheet of the commercial banks.

$$MB = 30 + 5 = 35$$

$$\Delta M = \left(\frac{1 + cd}{rd + cd} \right) \Delta MB = \left(\frac{1 + 0.2}{0.1 + 0.2} \right) \cdot 5 = 20$$

$$\Delta D = \left(\frac{1}{rd + cd} \right) \Delta MB = \left(\frac{1}{0.1 + 0.2} \right) \cdot 5 = 16 \frac{2}{3}$$

$$\Delta R = \left(\frac{rd}{rd + cd} \right) \Delta MB = \left(\frac{0.1}{0.1 + 0.2} \right) \cdot 5 = 1 \frac{2}{3}$$

$$\Delta CU = \left(\frac{cd}{rd + cd} \right) \Delta MB = \left(\frac{0.2}{0.1 + 0.2} \right) \cdot 5 = 3 \frac{1}{3}$$
Thus

\[M = 120 + 20 = 140 \]
\[D = 100 + 16\frac{2}{3} = 116\frac{2}{3} \]
\[R = 10 + 1\frac{2}{3} = 11\frac{2}{3} \]
\[CU = 20 + 3\frac{1}{3} = 23\frac{1}{3} \]

Balance sheet of the commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R = 11\frac{2}{3})</td>
<td>(D = 116\frac{2}{3})</td>
</tr>
<tr>
<td>(B_G = 20)</td>
<td>(L = 85)</td>
</tr>
<tr>
<td>(116\frac{2}{3})</td>
<td>(116\frac{2}{3})</td>
</tr>
</tbody>
</table>

The loans are simply set to balance the balance sheet. Notice that when the FED increased the monetary base by 5, the money supply increased by 20. This illustrates the fact that the FED does not have direct control over the money supply, but rather the commercial banks together with the FED create the money supply.

5. Suppose that instead of the open market operation, the FED sets the required reserve ratio to 5%. Find the new monetary base, money multiplier, the money supply and describe the new balance sheet of the commercial banks.

The monetary base does not change, because the FED did not buy or sell any asset.

\[MB = 30 \]
\[mm = \frac{1 + cd}{rd + cd} = \frac{1 + 0.2}{0.05 + 0.2} = 4.8 \]
\[M = \left(\frac{1 + cd}{rd + cd} \right) MB = \left(\frac{1 + 0.2}{0.05 + 0.2} \right) \cdot 30 = 144 \]
\[D = \left(\frac{1}{rd + cd} \right) MB = \left(\frac{1}{0.05 + 0.2} \right) \cdot 30 = 120 \]
\[R = \left(\frac{rd}{rd + cd} \right) MB = \left(\frac{0.05}{0.05 + 0.2} \right) \cdot 30 = 6 \]
\[CU = \left(\frac{cd}{rd + cd} \right) MB = \left(\frac{0.2}{0.05 + 0.2} \right) \cdot 30 = 24 \]

Balance sheet of the commercial banks

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R = 6)</td>
<td>(D = 120)</td>
</tr>
<tr>
<td>(B_G = 25)</td>
<td>(L = 89)</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Just to check that we did not make an error, let's verify that the consumers hold currency/deposits at the right ratio, and also that the banks hold reserves/deposits at the right ratio:

\[
\frac{CU}{D} = \frac{24}{120} = 0.2 \\
\frac{R}{D} = \frac{6}{120} = 0.05
\]

As was mentioned before, the FED does not use the second type of policy (changing the required reserve ratio) frequently. One of the goals of the FED is to maintain a stable banking system and if the required reserve ratio changes, the banks have to adjust their loans and deposits in a complicated way.
4 Illustration of the Money Multiplier

In this section we show in detail how an open market operation affects the balance sheet of the commercial banks and the money supply. The following steps illustrate the working of the money multiplier when the FED buys bonds at the amount of x from the commercial banks.

<table>
<thead>
<tr>
<th></th>
<th>Balance Sheet of Banks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>0.</td>
<td>$CU = 20$</td>
<td>$R = 10$</td>
</tr>
<tr>
<td>1.</td>
<td>$+x$</td>
<td>$+\frac{x}{1+cd}$</td>
</tr>
<tr>
<td>2.</td>
<td>$-x$</td>
<td>$+\frac{(1-rd)x}{(1+cd)^2}$</td>
</tr>
<tr>
<td>3.</td>
<td>$+rd\frac{x}{1+cd}$</td>
<td>$+\frac{(1-rd)x}{(1+cd)^3}$</td>
</tr>
<tr>
<td>4.</td>
<td>$+rd\frac{(1-rd)x}{(1+cd)^2}$</td>
<td>$+:+$</td>
</tr>
<tr>
<td>5.</td>
<td>$+rd\frac{(1-rd)^2x}{(1+cd)^3}$</td>
<td>$+:+$</td>
</tr>
<tr>
<td></td>
<td>$B_G = 25$</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>$-x$</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>$L = 65$</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>$+x$</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>$+(1-rd)x$</td>
<td>$+\frac{(1-rd)x}{1+cd}$</td>
</tr>
<tr>
<td>3.</td>
<td>$+(1-rd)x$</td>
<td>$+\frac{(1-rd)^2x}{(1+cd)^2}$</td>
</tr>
<tr>
<td>4.</td>
<td>$+(1-rd)x$</td>
<td>$+\frac{(1-rd)^3x}{(1+cd)^3}$</td>
</tr>
<tr>
<td>5.</td>
<td>$+:+$</td>
<td></td>
</tr>
</tbody>
</table>

Each step is numbered. Step "0" is the initial balance sheet. It is important to make sure that the balance sheet is balanced after each step, i.e. assets are equal to liabilities. In step 1 the FED buys bonds at the amount of x from the commercial banks. As a result, the bonds decreased by x and the reserves increased by x. Now after step 1, the commercial banks have too much reserves and they can lend the extra reserves to households. As a result of step 2 the reserves decreased by x while loans increased by x. In step 3, the loans at the amount of x are distributed between currency and deposits such that $\Delta CU + \Delta D = x$. Also, the commercial banks keep a fraction rd of the new deposits in reserves and lend the rest (a fraction $1 - rd$ of the new deposits). Observe that all the changes in step 3 in the balance sheet keep it balanced. The same is repeated in step 4, that is the extra loans are distributed between CU and D according to the currency/deposits ratio, and a fraction rd of the new deposits is kept in reserves while the rest is used for extra loans. This process continues indefinitely. In order to follow the above process more easily,
color each step in a different color and make sure that the impact of each step on the balance sheet keeps it balanced.

Suppose that the above steps continue forever. We can use the rule of summation of an infinite geometric series

\[\sum_{t=0}^{\infty} q^t = \frac{1}{1 - q} \quad (0 < q < 1) \]

to get the following results:

\[
\begin{align*}
\Delta D &= \frac{x}{1 + cd} \sum_{t=0}^{\infty} \left(\frac{1 - rd}{1 + cd} \right)^t = \frac{x}{1 + cd} \left(\frac{1 - \frac{1 - rd}{1 + cd}}{1 - rd + cd} \right) \\
\Delta CU &= cd \cdot \Delta D = \left(\frac{cd}{rd + cd} \right) x \\
\Delta M &= \Delta CU + \Delta D = \left(\frac{1 + cd}{rd + cd} \right) x \\
\Delta R &= rd \cdot \Delta D = \left(\frac{rd}{rd + cd} \right) x
\end{align*}
\]

Thus, we derived all the multipliers in section 3 as the limit when \(t \to \infty \) of the sequence of loans and deposits generated by the open market operation.

We can also compute all the magnitudes above after \(T \) steps. This is more realistic because in the real world the money circulates only limited number of times per year. In particular, the money velocity in 2005 is 9. Thus, we would like to compute the summations of the first 9 steps. This can be done using the rule summation of a finite geometric series

\[\sum_{t=0}^{T} q^t = \frac{1 - q^{T+1}}{1 - q} \]

This gives

\[
\begin{align*}
\Delta D &= \frac{x}{1 + cd} \sum_{t=0}^{T} \left(\frac{1 - rd}{1 + cd} \right)^t = \frac{x}{1 + cd} \left(\frac{1 - \left(\frac{1 - rd}{1 + cd} \right)^{T+1}}{1 - \frac{1 - rd}{1 + cd}} \right) \\
\Delta CU &= cd \cdot \Delta D = cd \cdot \left(\frac{1 - \left(\frac{1 - rd}{1 + cd} \right)^{T+1}}{rd + cd} \right) x \\
\Delta M &= \Delta CU + \Delta D = \left(\frac{1 - \left(\frac{1 - rd}{1 + cd} \right)^{T+1}}{rd + cd} \right) x \\
\Delta R &= rd \cdot \Delta D = rd \cdot \left(\frac{1 - \left(\frac{1 - rd}{1 + cd} \right)^{T+1}}{rd + cd} \right) x
\end{align*}
\]
For example, if the FED buys bonds at the amount of 5, then after 9 rounds of loans and deposits we have

\[
\Delta D = \left(1 - \left(\frac{1-rd}{1+cd} \right)^9 \right) \cdot \frac{5}{rd + cd} \\
\Delta CU = cd \cdot \left(1 - \left(\frac{1-rd}{1+cd} \right)^9 \right) \cdot \frac{5}{rd + cd} \\
\Delta M = (1 + cd) \cdot \left(1 - \left(\frac{1-rd}{1+cd} \right)^9 \right) \cdot \frac{5}{rd + cd} \\
\Delta R = rd \cdot \left(1 - \left(\frac{1-rd}{1+cd} \right)^9 \right) \cdot \frac{5}{rd + cd}
\]

This completes the illustration of money creation by the FED and the commercial banks.