Climate change is expected to modify the hydrological cycle and affect freshwater resources. Groundwater is a critical source of fresh drinking water for almost half of the world’s population and it also supplies irrigated agriculture. Groundwater is also important in sustaining streams, lakes, wetlands, and associated ecosystems. But despite this, knowledge about the impact of climate change on groundwater quantity and quality is limited.

Direct impacts of climate change on natural processes (groundwater recharge, discharge, storage, saltwater intrusion, biogeochemical reactions, chemical fate and transport) may be exacerbated by human activities (indirect impacts). Increased groundwater abstraction, for example, may be needed in areas with unsustainable or contaminated surface water resources caused by droughts and floods. Climate change effects on groundwater resources are, therefore, closely linked to other global change drivers, including population growth, urbanization and land-use change, coupled with other socio-economic and political trends. Groundwater response to global changes is a complex function that depends on climate change and variability, topography, aquifer characteristics, vegetation dynamics, and human activities.

This volume contains case studies from diverse aquifer systems, scientific methods, and climatic settings that have been conducted globally under the framework of the UNESCO-IHP project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC). This book presents a current and global synthesis of scientific findings and policy recommendations for scientists, water managers and policy makers towards adaptive management of groundwater sustainability under future climate change and variability.
TABLE OF CONTENTS

ABOUT THE EDITORS XV
ACKNOWLEDGMENTS XVII

1 Introduction 1
 1.1 Rationale 1
 1.2 Overview of the book 3
 References 13

Tropical Climates

2 The impacts of climate change and rapid development on weathered crystalline rock aquifer systems in the humid tropics of sub-Saharan Africa: evidence from south-western Uganda 17
 Richard Taylor & Callist Tindimugaya
 2.1 Introduction 17
 2.1.1 Purpose and scope 17
 2.1.2 Description of the study area: the River Mitano Basin 18
 2.2 Results and discussion 21
 2.2.1 Impacts of intensive groundwater abstraction 21
 2.2.2 Impact of climate change on groundwater recharge 23
 2.2.3 Uncertainty in climate change impacts on groundwater resources 26
 2.3 Conclusions and recommendations 29
 Acknowledgements 30
 References 30

3 Groundwater recharge and storage variability in southern Mali 33
 Chris M. Henry, Harm Demon, Diana M. Allen & Dirk Kirste
 3.1 Introduction 33
 3.1.1 Purpose and scope 33
 3.1.2 Study area description: southern Mali 34
 3.1.3 Methodology 36
 3.1.4 Relevance for GRAPHIC 40
3.2 Results and discussion

3.2.1 Groundwater levels and storage anomalies

3.2.2 Recharge modelling

3.3 Policy recommendations

3.4 Future work

Acknowledgements

References

4 Groundwater discharge as affected by land use change in small catchments: A hydrologic and economic case study in Central Brazil

Henrique M.L. Chaves, Ana Paula S. Camelo & Rejane M. Mendes

4.1 Introduction

4.1.1 Purpose and scope

4.1.2 Description of the area: the Pipiripau river basin

4.1.3 Relevance for GRAPHIC

4.2 Methodology

4.2.1 Correlating annual base flow discharge with basin land use intensity

4.2.2 Obtaining basin curve-number and base flow discharge from stream flow data

4.2.3 Empirical relationship between the base flow index and the normalized runoff coefficient

4.2.4 Estimating and valuing hydrological services resulting from land conservation scenarios

4.3 Results and discussion

4.3.1 Correlation between the dry season discharge and basin land use intensity

4.3.2 Base flow discharge hydrographs and basin curve-number (baseline condition)

4.3.3 Hydrological services resulting from land conservation scenarios

4.4 Policy recommendations

4.5 Future work

References

5 Effects of storm surges on groundwater resources, North Andros Island, Bahamas

John Bowleg & Diana M. Allen

5.1 Introduction

5.1.1 Purpose and scope

5.1.2 Study area description: North Andros Island

5.1.3 Methodology

5.1.4 Relevance for GRAPHIC
5.2 Results and discussion

5.2.1 The well field on North Andros
5.2.2 Hurricane Frances
5.2.3 Consequences of the storm surge in 2004

5.3 Policy recommendations
5.4 Future work
Acknowledgements
References

6 Reducing groundwater vulnerability in Carbonate Island countries in the Pacific

Ian White & Tony Falkland

6.1 Introduction
6.1.1 Purpose and scope
6.1.2 Study area description: Pacific Island countries
6.1.3 Methodology
6.1.4 Relevance for GRAPHIC

6.2 Results, discussion, and policy recommendations
6.2.1 Characteristics of fresh groundwater lenses
6.2.2 Threats to fresh groundwater
6.2.3 Reducing the vulnerability of groundwater systems

6.3 Future work
Acknowledgements
References

Dry (Arid and Semiarid) Climates

7 Groundwater resources increase in the Iullemmeden Basin, West Africa

Guillaume Favreau, Yahaya Nazoumou, Marc Leblanc, Abdou Guéro & Ibrahim Baba Goni

7.1 Introduction
7.1.1 Purpose and scope
7.1.2 Description of the study area: the Iullemmeden Basin
7.1.3 Methodology
7.1.4 Relevance to GRAPHIC

7.2 Results and discussion
7.2.1 Land use and land cover change
7.2.2 Increased runoff and erosion
7.2.3 Long-term changes in the water table
7.2.4 Impacts of climate change and land use changes on groundwater resources

7.3 Policy-relevant Recommendations
7.4 Future work
Acknowledgements
References
8 Climate change and its impacts on groundwater resources in Morocco: the case of the Souss-Massa basin

Lhoussaine Bouchaou, Tarik Tagma, Said Boutaleb, Mohamed Hssaisoune & Zine El Abidine El Morjani

8.1 Introduction

8.1.1 Purpose and scope

8.1.2 Description of the study area: the Souss-Massa basin

8.1.3 Methodology

8.1.4 Relevance to GRAPHIC

8.2 Results and discussion

8.2.1 Rainfall variation

8.2.2 Temperature and heat waves

8.2.3 Impacts on groundwater level

8.2.4 Impacts on groundwater quality

8.3 Policy recommendations

8.4 Future work

Acknowledgements

References

9 Vulnerability of groundwater quality to human activity and climate change and variability, High Plains aquifer, USA

Jason J. Gurdak, Peter B. McMahon & Breton W. Bruce

9.1 Introduction

9.1.1 Purpose and scope

9.1.2 Study area description: High Plains aquifer

9.1.3 Methodology

9.1.4 Relevance for GRAPHIC

9.2 Results, discussion, and policy recommendations

9.2.1 Groundwater availability and sustainability are a function of quantity and quality

9.2.2 Conversion of rangeland to irrigated cropland affects water quality

9.2.3 Chemical transport to the water table follows fast and slow paths

9.2.4 The quality of shallow and deep groundwater are substantially different

9.2.5 Mixing of groundwater by high-capacity wells adversely affects water quality

9.2.6 Limited ability to naturally attenuate some contaminants

9.2.7 Interannual to multidecadal climate variability affects recharge and groundwater quality

9.2.8 The quality of most water produced by private, public-supply, and irrigation wells is suitable for the intended uses
10 Groundwater change in the Murray basin from long-term in-situ monitoring and GRACE estimates

Marc Leblanc, Sarah Tweed, Guillaume Ramillien, Paul Tregoning, Frédéric Frappart, Adam Fakes & Ian Cartwright

10.1 Introduction 169
10.1.1 Purpose and scope 169
10.1.2 Study area description 170
10.1.3 Methodology 174
10.1.4 Relevance to GRAPHIC 176
10.2 Results and discussion 176
10.2.1 Long-term observations from in situ hydrographs 176
10.2.2 GRACE observations 179
10.2.3 Discussion 183
10.3 Policy-relevant recommendations 183
10.4 Future work 185
Acknowledgements 185
References 186

Temperate Climates

11 Impact assessment of combined climate and management scenarios on groundwater resources. The Inca-Sa Pobla hydrogeological unit (Majorca, Spain)

Lucila Candela, Wolf von Igel, F. Javier Elorza & Joaquín Jiménez-Martínez

11.1 Introduction 191
11.1.1 Description of the study area: the Inca-Sa Pobla hydrogeological unit 192
11.2 Methodology 194
11.2.1 Recharge estimation 194
11.2.2 Groundwater flow simulation model 195
11.2.3 Climate change scenarios. Statistical downscaling 195
11.2.4 Groundwater abstraction scenarios 196
11.2.5 Sensitivity and uncertainty analysis 197
11.2.6 Impact assessment by coupling climate and abstraction scenarios 197
11.3 Results and discussion 197
11.3.1 GCM and local predictions 197
11.3.2 Climate change impact on groundwater resources and natural recharge 198
11.3.3 Sensitivity analysis of water abstraction spatial location 199
X Contents

11.3.4 Impact of combined climate change and management scenarios on spring flow rate 199
11.4 Conclusions and relevance for GRAPHIC 201
References 202

12 The effect of climate and anthropogenic sea level changes on Israeli coastal aquifers 205
Yoseph Yechieli, Uri Kafri & Eyal Shalev

12.1 Introduction 205
12.1.1 Description of the area: the Israeli Mediterranean and the Dead Sea coastal aquifer systems 206
12.1.2 Relevance for GRAPHIC 209

12.2 Methodology 210
12.2.1 Field studies 210
12.2.2 Numerical simulation of the Mediterranean coastal aquifer system 210
12.2.3 Numerical simulation of the Dead Sea aquifer system 210

12.3 Results and discussion 211
12.3.1 The Mediterranean coastal aquifer system 211
12.3.2 The Dead Sea coastal aquifer 216

12.4 Summary and conclusion 220
12.5 Policy recommendations 222
Acknowledgements 223
References 223

13 Land subsidence and sea level rise threaten fresh water resources in the coastal groundwater system of the Rijnland water board, The Netherlands 227
Gualbert Oude Essink & Henk Kooi

13.1 Introduction 227
13.1.1 Relevance for GRAPHIC 228
13.1.2 Salinizing and freshening processes in Dutch coastal aquifers 230
13.1.3 Description of the area: the Rijnland Water Board 230

13.2 Description of the numerical method 233
13.2.1 Numerical code 233
13.2.2 Scenarios of sea level rise and land subsidence 234
13.2.3 The 3D model 234
13.2.4 Calibration of the 3D model 238

13.3 Results and discussion 241
13.3.1 Salinization of the groundwater system 241
13.3.2 Compensating measures 243

13.4 Conclusions 245
References 247
14 Climate change impacts on valley-bottom aquifers in mountain regions: case studies from British Columbia, Canada

Diana Allen

14.1 Introduction
14.1.1 Purpose and scope
14.1.2 Study area description: valley-bottom aquifers in mountain regions
14.1.3 Methodology
14.1.4 Relevance for GRAPHIC

14.2 Results and discussion
14.2.1 Okanagan Basin
14.2.2 Grand Forks

14.3 Policy recommendations
14.4 Future work
Acknowledgements
References

15 Possible effects of climate change on groundwater resources in the central region of Santa Fe Province, Argentina

Ofelia Tujchneider, Marta Paris, Marcela Pérez & Mónica D’Elía

15.1 Introduction
15.1.1 Purpose
15.1.2 Description of the area: the central region of Santa Fe Province
15.1.3 Methods
15.1.4 Relevance for GRAPHIC

15.2 Results and discussion
15.3 Policy recommendations
15.4 Future work
Acknowledgements
References

Continental Climates

16 Impacts of drought on groundwater depletion in the Beijing Plain, China

Yangxiao Zhou, Liya Wang, Jiurong Liu & Chao Ye

16.1 Introduction
16.1.1 Purpose and scope
16.1.2 Description of the study area: the Beijing Plain

16.2 Results and discussion
16.2.1 Detection of climate changes
16.2.2 Analysis of rapid decline of groundwater levels
16.2.3 Simulation of groundwater depletion under recent droughts
16.2.4 Options for mitigating further groundwater depletion
XII Contents

16.3 Management issues 299
 16.3.1 Legal aspects 299
 16.3.2 Institutional aspects 300
 16.3.3 A drought management plan 301
16.4 Conclusions and recommendations 301
Acknowledgements 302
References 302

17 Possible effects of climate change on hydrogeological systems: results from research on Esker aquifers in northern Finland 305
 Bjørn Kløve, Pertti Ala-aho, Jarkko Okkonen & Pekka Rossi
 17.1 Introduction 305
 17.1.1 Study area description: esker aquifers, northern Finland 307
 17.1.2 Importance of esker aquifers in climate change studies 309
 17.2 Results and discussion 310
 17.2.1 How should we assess climate change and land-use changes? 310
 17.2.2 Models used and our experiences from modelling 311
 17.2.3 Impact of future climate change on hydrology and recharge 312
 17.2.4 Surface water-groundwater interaction in lakes 314
 17.2.5 Impact of peatland drainage 316
 17.3 Policy recommendations 317
 17.4 Future work 317
Acknowledgements 318
References 318

Polar Climates

18 Impacts of climate change on groundwater in permafrost areas: case study from Svalbard, Norway 323
 Sylvi Haldorsen, Michael Heim & Martine van der Ploeg
 18.1 Introduction 323
 18.1.1 Purpose and scope 323
 18.1.2 Area description 325
 18.1.3 Methodology 325
 18.1.4 Relevance to GRAPHIC 326
 18.2 Results and discussion: Subpermafrost groundwater 326
 18.2.1 Discontinuous permafrost 326
 18.2.2 Continuous permafrost, case study Svalbard: results and discussion of previous work 327
 18.3 Policy-relevant recommendations 332
 18.4 Future work 333
References 334
Various Climates

19 Groundwater management in Asian cities under the pressures of human impacts and climate change 341
Makoto Taniguchi

19.1 Introduction 341
19.1.1 Relevance for GRAPHIC 342
19.2 Results and discussion 343
19.2.1 Satellite GRACE 343
19.2.2 Subsurface warming 344
19.2.3 Groundwater assessment as natural capacity 347
19.3 Policy recommendations 348
19.4 Conclusion and future work 349
References 349

20 Evaluation of future climate change impacts on European groundwater resources 351
Kevin Hiscock, Robert Sparkes & Alan Hodgson

20.1 Introduction 351
20.1.1 Description of the areas: aquifer units in northern and southern Europe 353
20.2 Methodology 353
20.3 Results and discussion 356
20.4 Conclusions 362
20.5 Future work and relevance to GRAPHIC 362
Acknowledgements 363
References 363

21 Sustainable groundwater management for large aquifer systems: tracking depletion rates from space 367
Sean Swenson & James Famiglietti

21.1 Introduction 367
21.1.1 Purpose and Scope 368
21.1.2 Description of the study area 368
21.1.3 Relevance to GRAPHIC 368
21.2 Methods and Results 369
21.2.1 Ground-based well measurements 369
21.2.2 Hydrologic Modelling 369
21.2.3 The GRACE-based approach: case studies from the Central Valley of California (USA) and northern India 370
21.4 A framework for global groundwater monitoring 373
Acknowledgements 374
References 374
Contents

22 Major science findings, policy recommendations, and future work

22.1 Overview

22.2 Tropical climates

- 22.2.1 Science findings
- 22.2.2 Policy recommendations

22.3 Dry (arid and semiarid) climates

- 22.3.1 Science findings
- 22.3.2 Policy recommendations

22.4 Temperate climates

- 22.4.1 Science findings
- 22.4.2 Policy recommendations

22.5 Continental climates

- 22.5.1 Science findings
- 22.5.2 Policy recommendations

22.6 Polar climates

- 22.6.1 Science findings
- 22.6.2 Policy recommendations

22.7 Various climates

- 22.7.1 Science findings
- 22.7.2 Policy recommendations

22.8 Future work

References

Contributing Authors and Contact Information

Author index

Subject index
ABOUT THE EDITORS

Holger Treidel is an environmental scientist and works as project coordinator with UNESCO's International Hydrological Programme in Paris. His work is related to the sustainable management of groundwater resources under the effects of climate change & variability, with particular focus on the complex challenges related to the management of transboundary aquifer systems. He is coordinating the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) and global and regional transboundary groundwater management projects in cooperation with the Global Environmental Facility (GEF).

Jose Luis Martin-Bordes is a civil engineer specialized in groundwater resources management and works as project coordinator in the International Hydrological Programme (IHP) within the Division of Water Sciences of UNESCO, Paris, France. He provides support to the coordination of the IHP Groundwater activities including the Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC), the International Shared Aquifer Resources Management Initiative (ISARM), Groundwater Dependent Ecosystems and Groundwater for Emergency Situations (GWES).

Jason J. Gurdak is Assistant Professor of hydrogeology in the Department of Geosciences at San Francisco State University, California, USA. He and his research group address basic and applied questions about sustainable groundwater management, vadose zone and soil-water processes that affect recharge and contaminant transport, groundwater vulnerability to contamination and climate extremes, and the effects of climate change and interannual to multidecadal climate variability on water resources. Since 2004 he has served on the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) that promotes science, education, and awareness of the coupled effects of climate change and human stresses on global groundwater resources.
ACKNOWLEDGMENTS

Compiling this book was a collaborative effort. We are sincerely grateful to all authors for their contributions. Their enthusiastic involvement and insightful feedback have allowed us to put together an interesting and valuable publication.

The preparation of this publication would have not been possible without the support of UNESCO’s International Hydrological Programme (IHP) and its Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) project, which has helped create an active and global group of scientists dedicated to unraveling groundwater and climate interactions and raising attention for a topic that has received only little attention previously. We would like to thank in particular Alice Aureli for her guidance and overall coordination and to Timothy Green for his continued support of the GRAPHIC expert group. Our thanks also go to the many cooperating universities, institutions, and organizations – too many to mention – that support GRAPHIC.

The Editors are grateful to the following people and many anonymous reviewers for their assistance with the external peer review of papers submitted for publication in this volume:

Giovanni Barrocu | University of Cagliari, Department of Land Engineering, Italy
John Bloomfield | British Geological Survey, UK
Elisabetta Carrara | Water Resource Assessment, Climate & Water Division/Bureau of Meteorology, Melbourne, Australia
Dioni Cendon Sevilla | ANSTO Institute for Environmental Research, Australia
Jianyao Chen | Department of Water Resource and Environment, School of Geographical Science and Planning, Sun Yatsen University, China
Ian Ferguson | U.S. Bureau of Reclamation, Lakewood, Colorado, USA
Timothy Green | U.S. Department of Agriculture, Agricultural Systems Research Unit, USA
Ian Holman | Cranfield Water Science Institute (CWSI), Cranfield University, UK
Neno Kukuric | International Groundwater Resources Assessment Centre (IGRAC), The Netherlands
James Terry | Department of Geography, National University of Singapore, Kent Ridge, Singapore
Tristan Wellman | U.S. Geological Survey, Lakewood, Colorado, USA
Kamel Zouari | Laboratory of Radio-Analysis and Environment of the National School of Engineers, Sfax, Tunisia
CHAPTER 1

Introduction

1.1 RATIONALE

Groundwater is an essential part of the hydrological cycle and is a valuable natural resource providing the primary source of water for agriculture, domestic, and industrial uses in many countries. Groundwater is now a significant source of water for human consumption, supplying nearly half of all drinking water in the world (WWAP 2009) and around 43 percent of all water effectively consumed in irrigation (Siebert et al. 2010). Groundwater also is important for sustaining streams, lakes, wetlands, and ecosystems in many countries.

The use of groundwater has particular relevance to the availability of many potable-water supplies because groundwater has a capacity to balance large swings in precipitation and associated increased demands during drought and when surface water resources reach the limits of sustainability. During extended droughts the utilization of groundwater for irrigation is expected to increase, including the intensified use of non-renewable groundwater resources, which may impact the sustainability of the resource. However, global groundwater resources may be threatened by human activities and the uncertain consequences of climate change.

Global change encompasses changes in the characteristics of inter-related climate variables in space and time, and derived changes in terrestrial processes, including human activities that affect the environment. Changes in global climate are expected to affect the hydrological cycle, altering surface-water levels and groundwater recharge to aquifers with various other associated impacts on natural ecosystems and human activities. Also groundwater discharge, storage, saltwater intrusion, biogeochemical reactions, and chemical fate and transport may be modified by climate change. Although the most noticeable impacts of climate change could be changes in surface water levels and quality, there are potential effects on the quantity and quality of groundwater. While recognizing that groundwater is a major source of water across much of the world, particularly in rural areas in arid and semi-arid regions, the Intergovernmental Panel on Climate Change (IPCC) 3rd and 4th Assessment Reports state that there has been very little research on the potential effects of climate change (IPCC 2001, 2007; Bates 2008). In recent decades, a wide array of scientific research has been carried out to better understand how water resources might respond to global change (Green et al. 2011). Recent research has been focused predominantly on surface-water systems, due to their visibility, accessibility and more obvious recognition of surface waters being affected by global change. However, little is known about how subsurface waters in the vadose zone and groundwater might respond to climate change and affect the current availability and future sustainability of groundwater resources (UNESCO 2008).

It is important to mention that in the past ten years the number of peer-reviewed journal publications addressing groundwater and climate change has increased considerably as shown in Fig. 1.1. Also only recently, water resources managers and politicians are progressively recognising the important role of groundwater resources in meeting the demands for drinking water, agricultural and industrial activities, and sustaining ecosystems, as well as in the adaptation to and mitigation of the impacts of climate change and coupled human activities (Green et al. 2011).
Introduction

Besides the direct impacts of climate change on the natural processes of the global hydrological cycle, it is crucial to also consider the indirect impacts. These are human responses to the direct impacts, such as increased utilization of groundwater in times of drought and non-availability of surface water and may lead to increased and unsustainable abstraction and utilization of groundwater resources, including non-renewable groundwater reserves. Thus, there are urgent and ongoing needs to address the expected coupled effects of human activities and climate change on global groundwater resources.

To address these concerns, the United Nations Educational, Scientific, and Cultural Organisation (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC project (Groundwater Resources Assessment under the Pressures of Humanity and Climate Change) in 2004. GRAPHIC seeks to improve our understanding of how groundwater interacts within the global water cycle, supports ecosystems and humankind and, in turn, responds to complex and coupled pressures of human activities and climate change. To successfully achieve these objectives within a global context, GRAPHIC was developed to incorporate a collaborative effort and umbrella for international research and education. GRAPHIC outlines areas of desired international investigations covering major geographical regions, groundwater resource topics, and methods to help advance the combined knowledge needed to address scientific and social aspects (UNESCO 2008).

The GRAPHIC project was designed with the understanding that groundwater resources can have nonlinear responses to atmospheric conditions associated with climate change and/or terrestrial-surface conditions associated with human activities. Therefore,

![Figure 1.1. Rate of peer-reviewed journal paper publications addressing groundwater and climate change from 1990 to 2010. A total of 198 papers addressing subsurface water and climate change are included. Final references were compiled in February 2011, so some papers published late in 2010 may be missing (modified from Green et al. 2011).](image)
groundwater assessments under the coupled pressures of human activities and climate change and variability involve the exploration of complex-system interactions. GRAPHIC incorporates a multidisciplinary scientific approach as the most rigorous platform to address such complexity. Furthermore, the GRAPHIC project extends investigations beyond physical, chemical, and biological interactions to include human systems of resource management and governmental policies. The structure of the GRAPHIC project has been divided into subjects, methods, and regions. The subjects encompass (i) groundwater quantity (recharge, discharge, and storage), (ii) quality, and (iii) management aspects. A variety of scientific methods and tools are being applied in the framework of GRAPHIC, including analysis of field data, geophysics, geochemistry, paleohydrology, remote sensing (in particular GRACE satellite gravimetry), information systems, modelling, and simulation. GRAPHIC consists of regional components (Africa, Asia and Oceania, Europe, Latin America, and the Caribbean and North America) where case studies have been identified and carried out.

The management of groundwater resources under the coupled pressures of climate change and human activities is a challenge. Sound understanding of the functioning of groundwater systems and their interactions with numerous and interlinked external factors is an indispensable basis for informed management. GRAPHIC strives to facilitate cooperation between scientists of different disciplines and from different countries. The basin/aquifer scale case studies presented in this book have been selected in each region by local scientists and experts of the respective subject.

1.2 OVERVIEW OF THE BOOK

Climate Change Effects on Groundwater – A Global Synthesis of Findings and Recommendations is a compilation of 20 case studies from more than 30 different countries that have been carried out under the framework of the UNESCO-IHP GRAPHIC project. The approximate location of each case study is displayed on the “Groundwater Resources of the World” map (WHYMAP 2008) (Fig 1.2).

The case studies presented in this volume represent aquifers from all the major climate regions of the world. The studies address groundwater resources in a range of hydrogeological settings from mountainous to coastal aquifer systems, including unconfined, semi-confined, and confined aquifers in unconsolidated to fractured-rock material. More details on each case study location, climate, hydrogeological setting, land use, groundwater use, as well as subjects addressed and methods applied are presented in the overview table (Table 1.1).

This volume is organized by case study according to the major climate groups of the Köppen-Geiger climate classification scheme (Köppen 1936): tropical, dry (arid and semi-arid), temperate, continental, and polar climates. Three chapters that cover several study areas and different climate groups are presented under “various climates” and are displayed in Figure 1.2 as one large circle or multiple circles indicating the regional scope of the respective chapter. The case study chapters (Chapters 2 to 21) each follow a similar organization and structure. The introduction of each chapter describes the purpose and scope, study area, methodology, and relevance to the GRAPHIC project. The results and discussion are followed by recommendations for water managers and planners, as well as policy and decision makers. Finally, the continuation of research activities and future work are outlined.
Figure 1.2. Approximate location of case study displayed on the “Groundwater Resources of the World” map (WHYMAP 2008). Numbers refer to the chapters in this volume. Case studies that cover several study areas and different climate groups are displayed as one large circle or multiple circles indicating the regional scope of the respective chapter.
Table 1.1 Overview of case studies.

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate</th>
<th>Hydrogeological setting</th>
<th>Land use</th>
<th>Groundwater use</th>
<th>Quantity or Quality</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2: The Impacts of Climate Change and Rapid Development on Weathered Crystalline Rock Aquifer Systems in the Humid Tropics of sub-Saharan Africa: Evidence from South-Western Uganda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Africa, South-western Uganda, River Mitano Basin</td>
<td>Tropical (humid)</td>
<td>Deeply weathered, crystalline rock aquifers</td>
<td>Agriculture, grassland, small areas of wetland, forest and plantations</td>
<td>Irrigation, livestock, drinking</td>
<td>Quantity: recharge, discharge, storage</td>
<td>Modelling</td>
</tr>
<tr>
<td>Chapter 3: Groundwater Recharge and Storage Variability in Southern Mali, Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Sub-Saharan Africa, southern Mali, Niger river basin</td>
<td>Tropical (wet and dry), and partly dry (semiarid)</td>
<td>Clayey laterites overlying unconfined/semi-confined fractured sandstone aquifers</td>
<td>Savanna, shrubland, agriculture</td>
<td>Drinking, agriculture, livestock</td>
<td>Quantity: recharge, storage</td>
<td>GRACE, Modelling, Monitoring</td>
</tr>
<tr>
<td>Chapter 4: Groundwater Discharge as Affected by Land Use Change in Small Catchments: A Hydrologic and Economic Case Study in Central Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South America, central Brazil, Pipiripau river basin</td>
<td>Tropical (humid)</td>
<td>Deep, well drained soils (red oxisols and ultisols), underlain by quartzites, phyllites, and rhythmites</td>
<td>Agriculture, pastureland, natural savannah, woodland, grassland</td>
<td>Support aquatic ecosystems and hydrological services</td>
<td>Quantity: base flow discharge</td>
<td>Data correlation, empirical method</td>
</tr>
<tr>
<td>Chapter 5: Effects of Storm Surges on Groundwater Resources, North Andros Island, Bahamas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Caribbean, The Bahamas, North Andros Island</td>
<td>Tropical (humid)</td>
<td>Shallow, fresh groundwater lens in limestone and limesand aquifers</td>
<td>Forest, shrubland, rural communities</td>
<td>Local drinking and domestic needs; primary water supply for New Providence Island</td>
<td>Quantity: recharge, storage</td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

(Continued)
Chapter 6: Reducing Groundwater Vulnerability in Carbonate Island Countries in the Pacific

| Central and southern Pacific Ocean, small island nations | Tropical/Sub-Tropical | Shallow, fresh groundwater lens in permeable coral sand and karst limestone aquifers | Forest, shrubland, urban | Drinking, agriculture | Quantity: recharge, abstraction, storage; Quality: saltwater intrusion | Modelling, Monitoring |

Chapter 7: Groundwater Resources Increase in the Iullemmeden Basin, West Africa

| West Africa, Nigeria and Niger, Iullemmeden Basin | Dry (semi-arid) | Sedimentary basin, largely unconfined. Several confined aquifers exists at depth. (Continental Terminal aquifer – unconfined) | Mainly rainfed agriculture, livestock breeding (in the North) | Drinking, livestock breeding. Use for irrigation very limited spatially | Quantity: groundwater dynamics and recharge | Remote sensing, subsurface geophysics, environmental geochemistry, hydrodynamics, monitoring, numerical modeling at various scales |

Chapter 8: Climate Change and its Impacts on Groundwater Resources in Morocco: the Case of the Souss-Massa Basin

| North Africa, Morocco, Souss-Massa basin | Dry (arid to semi-arid) | Shallow aquifer of the Souss-Massa plain, coastal aquifer | Irrigated agriculture | Irrigation, drinking, industry | Quantity: storage, recharge; Quality: salinization, nitrate | Trend analyses (precipitation and temperature), monitoring (gw level), hydrochemical and isotopic tracers |
Chapter 9: Vulnerability of Groundwater Quality to Human Activity and Climate Change and Variability, High Plains Aquifer, USA

<table>
<thead>
<tr>
<th>Location</th>
<th>Water Type</th>
<th>Activity</th>
<th>Quality</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America, central United States, Great Plains province</td>
<td>Dry (semi-arid)</td>
<td>High Plains aquifer: primarily unconsolidated, unconfined aquifers</td>
<td>Irrigation, livestock, drinking</td>
<td>Quality: nitrate, other chemical constituents, Age dating, GIS, Modelling, Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and dryland agriculture, rangeland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 10: Groundwater Change in the Murray Basin from Long-Term In-Situ Monitoring and GRACE Estimates (Australia)

<table>
<thead>
<tr>
<th>Location</th>
<th>Water Type</th>
<th>Activity</th>
<th>Quality</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeastern Australia, Murray Basin</td>
<td>Dry (semi-arid)</td>
<td>Unconsolidated sediments and sedimentary rocks, Confined and unconfined, Specific aquifers: Murray Group, Pliocene Sands aquifer, Shepparton Formation</td>
<td>Irrigation, livestock, drinking</td>
<td>Quantity: recharge, discharge, GRACE, Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farming land, native and plantation forests, livestock production (cattle and sheep)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 11: Impact Assessment of Combined Climate and Management Scenarios on Groundwater Resources. The Inca-Sa Pobla Hydrogeological Unit (Majorca, Spain)

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate</th>
<th>Activity</th>
<th>Quality</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe, Mediterranean Balearic island, Majorca, Spain</td>
<td>Mediterranean climate, temperate/semi-arid</td>
<td>Four different hydrostratigraphic units and three aquitard units, grouped into an upper and lower aquifer system</td>
<td>Irrigation, tourism, ecosystems</td>
<td>Quantity: recharge, discharge, exploitation, Modelling, simulations, management</td>
</tr>
</tbody>
</table>

(Continued)
Table 1.1 Continued

Chapter 12: The Effect of Climate and Sea Level Changes on Israeli Coastal Aquifers

| Mediterranean, coastal aquifers and Dead Sea, Israel | Mediterranean climate, dry (arid and semiarid) | Israeli coastal aquifer: inter-layered sandstone, calcareous sandstone, siltstone, and red loam | Agriculture | Irrigation, domestic | Quantity: recharge | Quality: saltwater intrusion, salinization | Modelling, simulations, monitoring |

Chapter 13: Land Subsidence and Sea-Level Rise Threaten Freshwater Resources in the Coastal Groundwater System of the Rijnland Water Board, The Netherlands

| Europe, Coastal groundwater system, Rijnland, The Netherlands | Temperate, Continental | Quaternary deposits, intersected by loamy aquitards and overlain by a Holocene aquitard of clay and peat | Agriculture | Irrigation, domestic and industrial | Quality: saltwater intrusion, salinization | Modelling, simulations |

Chapter 14: Climate Change Impacts on Valley-Bottom Aquifers in Mountain Regions: Case Studies from British Columbia, Canada

| North America, western Canada, mountain regions British Columbia | Dry (semi-arid to arid) | Okanagan Basin, Grand Forks: valley-bottom unconsolidated aquifers | Forest, shrubland, urban | Drinking, agriculture, industry | Quantity: recharge | GCM downscaling, Modelling, GIS |

Chapter 15: Possible Effects of Climate Change on Groundwater Resources in the Central Region of Santa Fe Province, Argentina

| South America, Argentina, Santa Fe Province | Temperate (humid) | Upper unconfined aquifer: aeolian sedimentary deposits Semi-unconfined aquifer: sands of fluvial origin | Agriculture, livestock, rearing | Drinking, food production (agriculture, livestock rearing), industry | Quantity: recharge, discharge | Quality: chemical compound input, salinization | Modelling |
Chapter 16: Impacts of Drought on Groundwater Depletion in the Beijing Plain, China

- **Location**: East Asia, China, Beijing Plain
- **Geology**: Continental (dry), Sedimentary (alluvial), shallow aquifer mainly unconfined, deep aquifers confined
- **Use**: Agriculture, industry, drinking
- **Irrigation**: From shallow aquifer, drinking, industry mainly from deep aquifer
- **Quality**: Quantity: recharge, storage
- **Monitoring**: Modelling

Chapter 17: Possible Effects of Climate Change on Hydrogeological Systems: Results from Research on Esker Aquifers in Northern Finland

- **Location**: Europe, northern Finland
- **Geology**: Continental (polar), Esker aquifers: unconsolidated, unconfined or confined
- **Use**: Forest, peatland, Ecosystems, drinking, recreation
- **Quality**: Quantity: recharge, discharge
- **Quality**: Temperature, dissolved oxygen, salts
- **Monitoring**: Modelling

Chapter 18: Climate Change Effects on Groundwater in Permafrost Areas – Case Study from the Arctic Peninsula of Svalbard, Norway

- **Location**: Europe, Norway, Svalbard peninsula
- **Geology**: Polar (arctic), Subpermafrost groundwater
- **Use**: None (60% covered by glaciers, large part is declared National Park), Drinking (very limited)
- **Quality**: Quantity: recharge, discharge
- **Quality**: Temperature, dissolved oxygen, salts
- **Monitoring**: Rock cores, simulation and modelling

Chapter 19: Groundwater Management in Asian Cities under the Pressures of Human Impacts and Climate Change

- **Location**: Asian coastal cities: Tokyo, Osaka, Seoul, Taipei, Bangkok, Jakarta and Manila
- **Geology**: Temperate, Continental Tropical, Coastal alluvial plain, urban subsurface soil
- **Use**: Urban Domestic use, industry
- **Quantity**: Recharge, storage
- **Quality**: Contamination
- **Monitoring**: GRACE, modelling, GIS

(Continued)
Chapter 20: Evaluation of Future Climate Change Impacts on European Groundwater Resources

<table>
<thead>
<tr>
<th>Northern and southern Europe, centred on the Å (Denmark), Medway (UK), Seine (France), Guadalquivir (Spain) and Po (Italy) river basins</th>
<th>Temperate, Continental Mediterranean</th>
<th>River Å: glacial sands and gravels</th>
<th>River Medway: Cretaceous Chalk and Lower Cretaceous Sands</th>
<th>River Seine: Cretaceous Chalk and Lower Cretaceous Sands</th>
<th>River Guadalquivir: dolomitic limestone and alluvial deposits</th>
<th>River Po: alluvial sediments</th>
<th>Drinking water, irrigation</th>
<th>Quantity: recharge, water-stress</th>
<th>Modelling, simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, industry</td>
<td>River Medway: agriculture, industry</td>
<td>River Seine: agriculture, urban, semi-urban</td>
<td>River Guadalquivir: irrigated agriculture</td>
<td>River Po: irrigated agriculture, urban, industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture, pasture, urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture, urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 21: Sustainable Groundwater Management for Large Aquifer Systems: Tracking Depletion Rates from Space

<table>
<thead>
<tr>
<th>North America, western US, California, Central Valley aquifer; and northern India</th>
<th>Central Valley: Temperate (Mediterranean climate); northern India: Dry-Continental</th>
<th>Central Valley and northern India: confining units and unconfined, semiconfined, and confined aquifers</th>
<th>Agriculture</th>
<th>Irrigated agriculture, drinking, and industry</th>
<th>Quantity: discharge, storage</th>
<th>GRACE, monitoring, and modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1 Continued
Tropical climate case studies (Chapters 2 to 6) include those from Africa (Uganda and Mali), Latin America (Brazil), the Caribbean (The Bahamas), and Pacific Island countries. Based on findings from south-western Uganda, Chapter 2 addresses whether intensive groundwater abstraction from weathered crystalline rock aquifers is a viable option to meet rapidly rising demand for domestic and agricultural water in Sub-Saharan Africa. The chapter also analyses projections of climate change impacts on groundwater resources and discusses opportunities and risks of their application to inform decision making. Chapter 3 describes the combined application of several methodologies, including measured field data, remote sensing, and modelling for estimating groundwater recharge and storage variability in southern Mali. The integration of these methods may be a promising tool for assessing groundwater resources in data scarce regions. The chapter also provides a preliminary assessment of the impacts of future climate change on groundwater recharge. The case study from Brazil (Chapter 4) uses an empirical method to assess the hydrological and economical effects of land-use change on groundwater discharge in a small tropical catchment.

Groundwater is the main source of freshwater on many islands. The resource is particularly vulnerable to extreme climate events, sea-level rise, and human-induced perturbations. Chapter 5 describes a storm surge from Hurricane Frances in 2004 that contaminated the groundwater supply on North Andros Island, The Bahamas. Chapter 6 presents key climatic, hydrogeological, physiographic, and management factors that influence groundwater quantity and saline intrusion into freshwater lenses beneath small Pacific Island countries.

Dry (arid and semiarid) climate case studies (Chapters 7 to 10) focus on the effects of climate change and human activities on groundwater resources in Africa (Morocco, Niger, and Nigeria), the United States (US), and Australia. Chapter 7 describes large-scale land clearing in the southern part of the Iullemmeden Basin that experiences increased groundwater recharge and rising water levels over the past several decades. Management responses to outcropping water tables and salinization of soils are discussed. The Morocco case study (Chapter 8) analyses trends in temperature and precipitation and the effects of projected changes on groundwater recharge and water quality in the arid Souss-Massa Basin.

The quality of groundwater is often as critically important as its quantity in terms of groundwater sustainability. Chapter 9 presents the coupled effects of human and climate stresses on groundwater quality in the High Plains aquifer, which is the most heavily used aquifer in the US and supplies about 30% of the groundwater used for irrigation in the US. Focusing, in turn, mainly on groundwater quantity aspects, Chapter 10 shows the complex and coupled effects of human activity (land clearing) on groundwater (increase of recharge and groundwater levels), and subsequent multi-year drought (decrease of groundwater levels) in the Murray Basin in south-eastern Australia. A comparison of borehole data with space gravimetry (GRACE) and soil moisture estimates from hydrological models is used to test the capability of the GRACE mission and provide regional estimates of change in groundwater storage so that it can be applied for the monitoring of insufficiently instrumented regions.

Temperate climate case studies (Chapters 11 to 15) include those from coastal aquifers in Spain, Israel, and The Netherlands, mountain regions of British Columbia, and the Santa Fe Province of Argentina. The Mediterranean region faces an increasing water demand for agriculture and tourism, while climate change projections forecast an
increase of temperature, decrease of precipitation, and increased occurrence of extreme events. Chapter 11 analyses combinations of climate scenarios and management strategies on the island of Majorca (Spain) in view of preserving groundwater resources under predicted climate change.

Seawater intrusion into coastal aquifers is a concern in the Mediterranean. Chapter 12 describes the coupled effect of climate and anthropogenic sea level changes on Israeli coastal aquifers of the Mediterranean Sea and the Dead Sea. Chapter 13 presents the impacts of land subsidence and sea-level rise on freshwater resources in coastal groundwater systems of The Netherlands. In these systems, saline groundwater comes from the sea and from deep saline aquifers, and subsequently intrudes near-surface coastal groundwater systems. The salinization of the subsoil is caused by human-driven processes of land subsidence that have been going on for nearly a millennium.

Mountain watersheds or basins are unique high-relief environments that are important sources of water for local and downstream ecosystems and human population. Chapter 14 provides an overview of hydrogeological processes in temperate mountain regions as a basis for understanding how climate change may influence the groundwater systems. Case study examples of two valley-bottom aquifer systems in southern British Columbia, Canada highlight the complex interactions that need to be considered for climate change impact and adaptation assessment. Applying a modelling approach, the chapter explores recharge mechanisms and evaluates how the magnitude and timing of recharge may change under future climate conditions.

In the temperate central region of the Santa Fe Province in Argentina (Chapter 15) groundwater is the only source of water for all regional demands. The case study analyses available hydrogeological data to describe the aquifer system and quantify present groundwater availability. Future recharge to the aquifer system is estimated, and incorporated into a numerical groundwater flow model to assess future groundwater availability for drinking and food production under different climate scenarios.

Continental climate case studies (Chapters 16 and 17) include those from China and Finland. Chapter 16 analyses the impacts of prolonged drought on groundwater resources in the Beijing Plain where the combined effects of decreasing natural recharge and increasing abstraction have caused rapid depletion of groundwater storage. The chapter elaborates on direct and indirect impacts of climate change and proposes management responses based on simulations of groundwater depletion under various scenarios. Chapter 17 describes possible effects of climate change on esker aquifers in northern Finland. Eskers are an important source of potable groundwater in Finland and support many ecosystem services. However, groundwater in eskers is threatened by peatland drainage, agriculture, roads, and other land uses. This chapter describes the possible impacts of climate change and land use on esker groundwater systems with focus on the impact of peatland drainage in the esker discharge zone.

The polar climate case study (Chapter 18) is from Svalbard, Norway. Polar regions are sparsely populated, but have gained a lot of interest in the discussions about climate change because high-latitude areas are predicted to experience the most dramatic global climate change in this century. Moreover, large parts of these areas are regarded as pristine, with unique and highly specialized habitats for animals and plants. Groundwater forms part of this system that is – and will be – highly impacted by climate change. Chapter 18 presents a case study that examines climate change impacts on arctic subpermafrost groundwater from the Arctic Peninsula of Svalbard, Norway.
Chapters 19 to 21 present case studies that encompass different climatic zones. Chapter 19 assesses the effects of climate change and human activities on urban subsurface environments and groundwater, which is an important but largely unexamined field of human-environment interactions. In this chapter, the subsurface environments of seven Asian coastal cities are studied with respect to water shortage, land subsidence, groundwater storage and contamination, thermal anomalies, and the urban heat island effect.

Similar to other regions of the world, groundwater in Europe is a substantial economic resource that is threatened by over-abstraction and contamination from surface-derived pollutants, which could be exacerbated by climate change. Chapter 20 evaluates future climate change effects on European groundwater resources in five study areas in northern and southern Europe, centred on the Å (Denmark), Medway (UK), Seine (France), Guadalquivir (Spain), and Po (Italy) river basins.

Chapter 21 describes the application of satellite gravimetry (GRACE) for characterizing groundwater storage changes in large aquifer systems – a method that provides new opportunities for water-resources monitoring, particularly in data sparse regions. Two case studies of groundwater depletion are presented, one in the relatively data-rich Central Valley aquifer of California (US) and in the other in more data-poor northern India.

The last chapter, Chapter 22, summarizes the main findings of the book in terms of new scientific insight and policy recommendations. This chapter, in particular, is expected to be of great interest to water resource managers, planners, and decision makers entrusted with the management of a valuable resource. In the light of global change, and climate change in particular, groundwater will continue to be an important resource that supports human health and livelihoods and many natural ecosystems. A sound understanding of the resource and current and future pressures from climate and human activities are necessary to guide adaptive management towards long-term groundwater sustainability.

REFERENCES

Introduction

Contributing Authors and Contact Information

Pertti Ala-aho
Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland

Diana M. Allen*
Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, email: dallen@sfu.ca

Ibrahim Baba Goni
Maiduguri University, Department of Geology, PMB 1069, Maiduguri, Nigeria

Lhoussaine Bouchaou*
Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP 8106 Cite Dakhla, 80000 Agadir, Morocco, email: lbouchaou@yahoo.fr

Saib Boutaleb
Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP 8106 Cite Dakhla, 80000 Agadir, Morocco

John Bowleg*
Water Resources Management Unit, Water & Sewerage Corporation (WSC), Nassau, Bahamas, email: wcjbowleg@wsc.com.bs

Breton W. Bruce
U.S. Geological Survey, Lakewood, Colorado, USA

Ana Paula S. Camelo
School of Technology-ENC, University of Brasilia-UnB, 70910–900, Brasilia-DF, Brazil

Lucila Candela*
Department of Geotechnical Engineering and Geoscience-Universitat Politècnica de Catalunya (UPC), C/Gran Capitán s.n., Barcelona, Spain, email: Lucila.candela@upc.edu

Ian Cartwright
School of Geosciences, Monash University, Melbourne, VIC 3800, Australia

Henrique M.L. Chaves*
School of Technology-EFL, University of Brasilia-UnB, 70910–900, Brasilia-DF Brazil, email: hchaves@unb.br

Mónica D’Elía
Grupo de Investigaciones Geohidrológicas, Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina

Harm Demon
Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

* Corresponding author
Zine El Abidine El Morjani
Polydisciplinary Faculty of Taroudant, Ibn Zohr University,
Hay El Mohammadi (Lastab), BP. 271, 83 000 Taroudant,
Morocco

F. Javier Elorza
Universidad Politécnica de Madrid, Ríos Rosas 21,
28003, Madrid, Spain

Adam Fakes
School of Earth and Environmental Sciences, James
Cook University, Cairns, QLD 4878, Australia

Tony Falkland
Island Hydrology Services, Canberra, Australia

James Famiglietti*
UC Center for Hydrologic Modeling, Department of
Earth System Science, University of California, Irvine,
California, USA, email: jfamigli@uci.edu

Guillaume Favreau*
IRD, UMR HydroSciences Montpellier, 276 Av.
Maradi, BP 11416, Niamey, Niger, & Université Abdou
Moumouni, Faculté des Sciences, département de
Géologie, BP 10662, Niamey, Niger, email: Guillaume.
Favreau@ird.fr

Frédéric Frappart
GET, GRGS, Observatoire Midi-Pyrénées, 14 Avenue
Edouard Belin, 31400 Toulouse Cedex 01, France

Abdou Guéro
Niger Basin Authority, 288 rue du Fleuve Niger, BP 729,
Niamey, Niger

Jason J. Gurdak*
Department of Geosciences, San Francisco State
University, San Francisco, California, USA, email:
jgurdak@sfsu.edu

Sylvi Haldorsen*
Department of Plants and Environmental Science,
Norwegian University of Life Sciences, PO Box 5003,
N-1432 AAs, Norway, email: sylvi.haldorsen@umb.no

Mohamed Hssaisoune
Applied Geology and Geo-Environment Laboratory, Ibn
Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir,
Morocco

Michael Heim
Department of Plants and Environmental Science,
Norwegian University of Life Sciences, P:O.Box 5003,
N-1432 AAs, Norway

Chris M. Henry
Department of Earth Sciences, Simon Fraser University,
Burnaby, British Columbia, Canada

Kevin Hiscock*
School of Environmental Sciences, University of East Anglia,
Norwich, NR4 7TJ, UK, email: k.hiscock@uea.ac.uk

Alan Hodgson
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Joaquín Jiménez-Martínez
Department of Geotecnical Engineering and Geoscience-
Universitat Politècnica de Catalunya (UPC), C/Gran
Capitán s.n., Barcelona, Spain
Contributing Authors and Contact Information

Uri Kafri
Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel

Dirk Kirste
Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

Bjørn Kløve*
Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland email: bjorn.klove@oulu.fi

Henk Kooi
Department of Hydrology and Geo-Environmental Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Marc Leblanc*
School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4878, Australia, email: marc.leblanc@jcu.edu.au

Jiurong Liu
Beijing Geo-environmental Monitoring Station, China

Peter B. McMahon
U.S. Geological Survey, Lakewood, Colorado, USA

Rejane M. Mendes
School of Technology-EFL, University of Brasilia-UnB, 70910–900, Brasilia-DF, Brazil

Yahaya Nazoumou
IRD, UMR HydroSciences Montpellier, 276 Av. Maradi, BP 11416, Niamey, Niger

Jarkko Okkonen
Geological Survey of Finland, Kokkola, Finland

Gualbert Oude Essink*
Deltares, Subsurface and Groundwater Systems, PO Box 85467, 3508 AL Utrecht, The Netherlands, email: gualbert.oudeessink@deltares.nl

Marta Paris
Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina

Marcela Pérez
Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina

Martine van der Ploeg
Wageningen University, Dep. Environmental Sciences, P.O. Box 47, 6700AA, Wageningen, The Netherlands.

Guillaume Ramillien
GET, GRGS, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse Cedex 01, France

Pekka Rossi
Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, Finland
Contributing Authors and Contact Information

Eyal Shalev
Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel

Robert Sparkes
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Sean Swenson
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA

Tarik Tagma
Applied Geology and Geo-Environment Laboratory, Ibn Zohr University, BP. 8106 Cite Dakhla, 80000 Agadir, Morocco

Makoto Taniguchi*
Research Institute for Humanity and Nature (RIHN), Kyoto, Japan email: taniguchispot@gmail.com

Richard Taylor*
Department of Geography, University College London, London, UK, email: r.taylor@geog.ucl.ac.uk

Callist Tindimugaya
Directorate of Water Resources Management, Ministry of Water and Environment, Entebbe, Uganda

Paul Tregoning
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

Ofelia Tujchneider*
Grupo de Investigaciones Geohidrológicas. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral, Ciudad Universitaria (3000) Santa Fe, Argentina/ Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina, email: ofeliatujchneider@yahoo.com.ar

Sarah Tweed
School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4878, Australia

Wolf von Igel
Department of Geotecnical Engineering and Geoscience-Universitat Politécnica de Catalunya (UPC), C/Gran Capitán s.n., Barcelona, Spain/Amphos XXI Consulting S.L. Pg. de Rubí, 29-31, 08197, Valldoreix, Spain

Liya Wang
China University of Geosciences, Beijing, China & Beijing Geo-environmental Monitoring Station, China

Ian White*
Fenner School of Environment and Society, Australian National University, Canberra, Australia, email: ian.white@anu.edu.au

Chao Ye
Beijing Geo-environmental Monitoring Station, China

Yoseph Yechieli*
Geological Survey of Israel, 30 Malkhe Israel, Jerusalem, 95501, Israel, email: yechieli@gsi.gov.il

Yangxiao Zhou*
UNESCO-IHE Institute for Water Education, Delft, The Netherlands
Subject Index

A
Åriver, 349, 352
Argentina, 8, 11, 12, 265–276, 383, 391
Asia, 9, 13, 326–327, 341–349, 373, 383, 384
Atlantic Multidecadal Oscillation (AMO), 161, 388, 391
Australia, 7, 11, 57, 169–185, 381–382

B
Bahamas, 5, 11, 63–73, 379–380
Bangkok, 9, 341–342, 344–348
Base flow discharge, 49
Beijing Plain, 9, 12, 281–302
Brazil, 5, 11, 23, 49–61, 378, 380
British Columbia, 8, 11–12, 249–262, 393

C
Canada, 8, 12, 249–262, 305, 326, 385, 393
Caribbean Islands, 63–73
Central Valley aquifer, 10, 13, 367–374
China, 9, 12, 281–302, 333, 370, 385
creeping normalcy, 163
crystalline rock aquifer system, 5, 17–30

D
Dead Sea coastal aquifer, 205–210, 212, 213, 216–220, 222
denitrification, 160
Denmark, 10, 13, 349–359
downscaling, 8, 25, 29, 40, 61, 73, 119, 194–196, 201, 254, 256–257, 260, 310, 361, 369, 379, 383

E
East Africa, 5, 17–30
East Asia, 9, 281–302, 341–349
El Niño/Southern Oscillation (ENSO), 75, 80, 93, 160–161, 185, 379, 388, 391
Esker aquifer, 305–318

F
Finland, 9, 12, 305–318, 351–352
France, 10, 13, 351–356, 359, 362

G
2 Subject Index

GENESIS, 318
Global Land Data Assimilation System (GLDAS), 33, 38, 41, 43, 170, 182, 371
GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Climate Change), 2–3, 29–30, 40, 50–52, 68–69, 75, 77–79, 117, 132, 146, 151, 176, 201, 209, 228, 254, 269, 282, 326, 342–343, 362, 368
groundwater age dating, 7, 150
groundwater availability, 1, 12, 29, 66, 79, 89, 132, 152, 265, 358, 360, 362, 367
groundwater quality, 7, 11, 138, 141, 145–165, 265, 300–301, 313, 367, 392
groundwater residence time, 129, 141–142, 157, 160, 163, 268, 316, 325, 332, 343, 368, 381, 388, 390, 393
Guadalquivir river, 10, 13, 351–356, 360

H
Hydrologic Evaluation of Landfill Performance (HELP), 38
High Plains aquifer, 7, 11, 145–165, 378, 381–382
Hurricane Frances, 11, 63–73, 379

I
India, 10, 13, 367–368, 370, 372–373
Island aquifers, 5–7, 11–12, 63–73, 75–105, 191–202
Israel, 8, 11–12, 205–223 383
Italy, 10, 13, 351–356, 359–361
Iullemmeden Basin, 6, 11, 113–125, 381–382

J
Jakarta, 9, 341–342, 344, 347–348

L
land clearing, 11, 113–125, 169–171, 175–179, 183, 382
land subsidence, 8, 12–13, 227–247, 282, 341–342, 347348, 368, 383
land-use change, 11, 73, 152–154, 191, 307, 310–311, 378, 380–382

M
Majorca, 7, 12, 191–202, 383
Manila, 9, 341–342, 347–348
Mali, 5, 11, 33–47, 114, 117, 120, 378, 380, 389
Medway river, 10, 13, 351, 353–354, 356, 358
Mediterranean region, 7–8, 10–12, 129–130, 133, 141, 191–202, 205–223, 351, 362, 382
Mitano River Basin, 5, 17–30
MODFLOW, 46, 191, 195, 197, 234, 238, 258, 268, 290, 344
Morocco, 6, 11, 129–142, 382
Mountain watershed, 12, 249–262, 393
Murray Groundwater Basin, 7, 11, 169–185, 381–382

N
NAWQA (National Water Quality Assessment), 146
Niger, 6, 11, 113–125
Niger River Basin, 5, 33–46
Nigeria, 6, 11, 113–125
North Africa, 6, 129–142
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America, 7, 8, 10, 145–167, 249–262, 367–374, 384</td>
</tr>
<tr>
<td>North Andros Island, 5, 11, 63–73, 379–380</td>
</tr>
<tr>
<td>North Atlantic Oscillation, 310, 318, 388, 391</td>
</tr>
<tr>
<td>Norway, 9, 12, 323–334, 387</td>
</tr>
<tr>
<td>Ogallala Formation, 148</td>
</tr>
<tr>
<td>Osaka, 9, 341–342, 344–348</td>
</tr>
<tr>
<td>Pacific Decadal Oscillation, 160–161, 388, 391</td>
</tr>
<tr>
<td>Pacific Island countries, 6, 11, 75–105, 378–380, 390</td>
</tr>
<tr>
<td>permafrost, 9, 12, 323–334, 386–387</td>
</tr>
<tr>
<td>Po river, 10, 13, 351, 353–354, 356, 361</td>
</tr>
<tr>
<td>quality: see water quality</td>
</tr>
<tr>
<td>Rijnland, 8, 227–247</td>
</tr>
<tr>
<td>Santa Fe province, 8, 11–12, 265–276, 383, 391</td>
</tr>
<tr>
<td>saprock–saprolite aquifer system, 17–30, 378</td>
</tr>
<tr>
<td>Seine river, 10, 13, 351, 353–354, 356, 359</td>
</tr>
<tr>
<td>Souss–Massa basin, 6, 11, 129–142</td>
</tr>
<tr>
<td>Spain, 7, 10–13, 191–192, 351–356, 360, 383, 389, 392</td>
</tr>
<tr>
<td>storm surge, 5, 11, 63–73, 75, 89–92, 378–380</td>
</tr>
<tr>
<td>South America, 5, 8, 49–61, 265–276, 378, 380, 383, 391</td>
</tr>
<tr>
<td>storage: see groundwater storage</td>
</tr>
<tr>
<td>submarine discharge, 76</td>
</tr>
<tr>
<td>subpermafrost groundwater (aquifers), 9, 12, 323–334, 386–387</td>
</tr>
<tr>
<td>Svalbard peninsula, 9, 12, 323–334, 387</td>
</tr>
<tr>
<td>Taipei, 9, 341–342, 344, 347–348</td>
</tr>
<tr>
<td>terrestrial water storage anomalies, 33</td>
</tr>
<tr>
<td>The Netherlands, 8, 11–12, 206, 227–247, 352, 383–384</td>
</tr>
<tr>
<td>Tokyo, 9, 341–342, 344–348</td>
</tr>
<tr>
<td>trench and conduit system, 63, 66–72, 379–380</td>
</tr>
<tr>
<td>Uganda, 5, 11, 17–30, 378</td>
</tr>
<tr>
<td>United Kingdom, 10, 13, 351, 353–354, 356, 358</td>
</tr>
<tr>
<td>Urban subsurface environment, 9, 13, 341–349</td>
</tr>
<tr>
<td>uncertainty, 17, 26, 34, 184, 191, 197, 201, 234, 270, 276, 317, 342, 361, 370, 378–379, 393</td>
</tr>
<tr>
<td>unsaturated zone, 38, 145, 147, 150–162, 171, 194, 360</td>
</tr>
<tr>
<td>Vadose zone, 1, 38, 123, 222, 272, 381, 389</td>
</tr>
<tr>
<td>valley–bottom aquifer system, 249–262</td>
</tr>
</tbody>
</table>
4 Subject Index

W
water balance, 194, 198, 208, 267–268, 342, 358
water table fluctuation method, 33–46
West Africa, 5–6, 33–47, 113–125, 183, 378, 381–382
Climate change is expected to modify the hydrological cycle and affect freshwater resources. Groundwater is a critical source of fresh drinking water for almost half of the world’s population and it also supplies irrigated agriculture. Groundwater is also important in sustaining streams, lakes, wetlands, and associated ecosystems. But despite this, knowledge about the impact of climate change on groundwater quantity and quality is limited.

Direct impacts of climate change on natural processes (groundwater recharge, discharge, storage, saltwater intrusion, biogeochemical reactions, chemical fate and transport) may be exacerbated by human activities (indirect impacts). Increased groundwater abstraction, for example, may be needed in areas with unsustainable or contaminated surface water resources caused by droughts and floods. Climate change effects on groundwater resources are, therefore, closely linked to other global change drivers, including population growth, urbanization and land-use change, coupled with other socio-economic and political trends. Groundwater response to global changes is a complex function that depends on climate change and variability, topography, aquifer characteristics, vegetation dynamics, and human activities.

This volume contains case studies from diverse aquifer systems, scientific methods, and climatic settings that have been conducted globally under the framework of the UNESCO-IHP project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC). This book presents a current and global synthesis of scientific findings and policy recommendations for scientists, water managers and policy makers towards adaptive management of groundwater sustainability under future climate change and variability.