HF communications in the 0–300 kilometer range can be difficult. Ground waves have very limited coverage over land, and skywaves radiated by traditional HF antennas tend to skip over the shorter ranges. The Model 530 is designed specifically to support skywave communications at short (0–500 km) ranges. The 530 directs energy overhead to provide optimal support for short-range circuits. In addition, at the higher frequencies used for longer ranges, the 530 radiates significant energy at lower angles for medium- and long-range circuits.

The 530 is extremely useful for ground-air and ship-shore applications. Its radiation pattern is also suitable for secondary coverage of medium-range circuits, significantly outperforming traditional conical monopole and inverted cone antennas. A comparison of the gain of the 530 with the gain of typical vertically polarized omnidirectional antennas (see reverse) clearly shows the superiority of the 530 for medium-range communications.

Support skywave communications at distances up 500 km and beyond.

The 530 is horizontally polarized, thus avoiding the ground losses associated with vertically polarized antennas. The efficiency of the 530 exceeds 95% throughout the band; no lossy terminations are used.

Using only a single tower for support minimizes the 530’s installation costs and real estate requirements. The tower is made entirely of 6061-T6 structural aluminum alloy—the ideal material for antenna towers where long life and corrosion resistance are important considerations. Curtains and catenaries are fabricated in TCI’s factory entirely of Alumoweld stranded wire cables. All guy insulators are low-loss, glazed ceramic fail-safe types. No organic or synthetic materials such as fiberglass or Kevlar® are used anywhere in the antenna. These features ensure long life and low maintenance costs.

In periods of low sunspot activity, when high effective radiated power is required to produce sufficient signal at the receiver, the Model 530 provides superior electrical performance. For short-range communications with secondary coverage of medium- and long-range targets, the 530 outperforms all other HF antennas.

KEY FEATURES

- High-angle radiation for reliable short-range communications
- Horizontally polarized – no ground losses
- High power gain
- Effective medium-range coverage
- Rugged construction
Azimuth and Elevation Patterns (Azimuth pattern at elevation angle of beam maximum) gain in dBi
Model 530 Specifications

Polarization
Circular in horizontal plane. Either sense depending on requirements of application. Consult TCI regarding proper sense of polarization.

Direction of Beam Maximum
90° at 2 MHz, 90° at 8 MHz, 30° at 20 MHz, 20° at 30 MHz

Power Gain Relative to Isotropic Antenna
6.5 dB at 2 MHz, 5 dB at 8 MHz, 6.5 dB at 20 MHz, 5.5 dB at 30 MHz

Efficiency
Greater than 95%

Azimuth Pattern
Essentially circular

Shipping Weight and Volume
530-3 3500 lb. 150 cu. ft. (1600 kg. 5.9 cu. m.)
530-4 1900 lb. 95 cu. ft. (850 kg. 2.7 cu. m.)
530-5 3000 lb. 140 cu. ft. (1350 kg. 4 cu. m.)

VSWR
• 2.5:1 maximum
• 2.0:1 maximum over 80% of frequency band

Ground Screen Requirement
None Required

Environmental Performance
530-3 & 530-4: Designed in accordance with TIA/EIA Specification RS-222C for loading of 225 km/h (140 mi/h) wind, no ice, or 145 km/h (90 mi/h) wind, 12 mm (1/2") radial ice.
530-5: Designed in accordance with TIA/EIA Specification RS-222E for loading of 201 km/h (125 mi/h) wind, no ice or 145 km/h (90 mph) wind, 6.3 mm (1/4") radial ice.

Table 1: Frequency Range & Size

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Frequency Range</th>
<th>Height</th>
<th>Width*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ft. m ft. m</td>
<td></td>
</tr>
<tr>
<td>530-3-N</td>
<td>2–30 MHz</td>
<td>133 40.6 300 x 300</td>
<td>92 x 92</td>
</tr>
<tr>
<td>530-4-N</td>
<td>3–30 MHz</td>
<td>92 28.2 217 x 217</td>
<td>67 x 67</td>
</tr>
<tr>
<td>530-5-N</td>
<td>2.75–30 MHz</td>
<td>101 30.6 230 x 230</td>
<td>71 x 71</td>
</tr>
</tbody>
</table>

*Replace “N” with power code from Table 2

Table 2: Power Rating and Impedance Data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Input Impedance</th>
<th>Power Handling Capability</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>530-N-02</td>
<td>50 ohms</td>
<td>Receive only</td>
<td>Type N Female</td>
</tr>
<tr>
<td>530-N-06</td>
<td>50 ohms</td>
<td>1 kW avg. / 2 kW pk</td>
<td>Type N Female</td>
</tr>
<tr>
<td>530-N-03</td>
<td>50 ohms</td>
<td>10 kW Avg. / 20 kW pk</td>
<td>1 5/8” EIA Female</td>
</tr>
<tr>
<td>530-N-28</td>
<td>50 ohms</td>
<td>5 kW Avg. / 10 kW pk</td>
<td>7/8” EIA Female</td>
</tr>
</tbody>
</table>

*Replace “N” with power code from Table 1

Table 3: Gain of Model 530 vs. Typical Vertically Polarized Omnis

<table>
<thead>
<tr>
<th>Path Length</th>
<th>TOA</th>
<th>Gain at 3 MHz (dB)*</th>
<th>Gain at 12 MHz (dB)*</th>
<th>Gain at 20 MHz (dB)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mi. (333 km)</td>
<td>60°</td>
<td>+6</td>
<td>−3</td>
<td>−1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+5</td>
<td>−4</td>
<td>+3</td>
</tr>
<tr>
<td>1000 mi. (1600 km)</td>
<td>17°</td>
<td>−1</td>
<td>+2</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>−4</td>
<td>−4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Gain calculated with antenna over average ground.
Specialized Expertise in a Global Family

TCI International, Inc., a leading supplier of end-to-end, ITU-compliant RF spectrum monitoring and management products, is a wholly-owned subsidiary of SPX Corporation. Based in Charlotte, North Carolina, SPX Corporation (NYSE: SPXC) is a global, multi-industry manufacturing leader. SPX team members collaborate across business segments and borders to deliver greater efficiencies and better ideas for helping customers succeed.

At TCI, this commitment to innovation supports an array of customers whose missions depend on having a clear picture of their electromagnetic environment. For over 45 years, TCI's technical developments and advanced production capabilities have earned it a reputation for excellence in high-performance communications, spectrum monitoring and signals intelligence systems.

TCI's diverse hardware and software engineering capabilities provide proven solutions for regulatory compliance, monitoring and security, and communications intelligence applications. With advanced spectrum mapping and analytics, data recording and precision geolocation technology, TCI systems provide vital data for government and military agencies in over 100 countries worldwide.