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Abstract
Existing research on DEM vertical accuracy assessment uses mainly statistical
methods, in particular variance and RMSE which are both based on the error
propagation theory in statistics. This article demonstrates that error propagation
theory is not applicable because the critical assumption behind it cannot be satisfied.
In fact, the non-random, non-normal, and non-stationary nature of DEM error
makes it very challenging to apply statistical methods. This article presents approxi-
mation theory as a new methodology and illustrates its application to DEMs created
by linear interpolation using contour lines as the source data. Applying approxima-
tion theory, a DEM’s accuracy is determined by the largest error of any point (not
samples) in the entire study area. The error at a point is bounded by max(|dnode| +
M2h2/8) where |dnode| is the error in the source data used to interpolate the point, M2

is the maximum norm of the second-order derivative which can be interpreted as
curvature, and h is the length of the line on which linear interpolation is conducted.
The article explains how to compute each term and illustrates how this new meth-
odology based on approximation theory effectively facilitates DEM accuracy assess-
ment and quality control.
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1 Introduction

Myriad applications count on digital elevation models (DEM) to infer topographical
properties, thus DEM quality may have serious implications for geospatial activities. A
pivotal indicator of DEM quality is its vertical accuracy which is the deviation of the
estimated elevation (Z) from the ground truth (z), i.e. |Z - z|. In the literature, many
methods have been proposed to assess DEM vertical accuracy but nearly all of them are
statistics-based. Among them, variance and root mean square error (RMSE), which are
based on the error propagation theory in statistics, have been most popular (Tempfli
1980, Li 1993, Huang 2000, Shi et al. 2005, Aguilar et al. 2010). This is exemplified by
the U.S. National Standard on Spatial Data Assessment (NSSDA) which uses RMSE to
assess DEM vertical accuracy (FGDC 1998). Despite the popularity of these methods,
there have always been reservations on their effectiveness because the assumptions
behind these methods contradict empirical observations (Fisher 1998, Wise 2000, Bonin
and Rousseaux 2005, Oksanen and Sarjakoski 2006). Remedies have been proposed but
they are still statistics-based, e.g. the 95th percentile method (NDEP 2004) and geosta-
tistics (Kyriakidis and Goodchild 2006).

In previous research, we have presented approximation theory as a new viable
methodology to assess DEM vertical accuracy (Hu et al. 2009a). Based on this method-
ology, a theoretical framework to assess DEMs generated by three interpolation methods
was presented. The framework articulated for the first time the theoretical reasons
behind several empirical observations, e.g. the correlation between DEM error, terrain
complexity, and sampling density. However, it has not been shown how this framework
can be applied to real-world analyses. This research fills this gap by explaining the
framework in detail using a case study. Specifically, linear interpolation in 1D is applied
to create a DEM using a topographic map as the source data. The vertical accuracy of the
DEM is then assessed based on approximation theory. DEMs interpolated from topo-
graphic maps are currently used worldwide. It is a main type of DEM in the USGS’s
National Elevation Dataset (Gesch 2007). Until advanced technologies such as LiDAR
and IFSAR become more affordable, DEMs generated from topographic maps are
expected to remain popular. A case study of this type of DEM is thus valuable.

In the following sections, we first explain why statistical methodology is not appli-
cable to vertical error assessment of DEMs generated by interpolation, then introduce
approximation theory and its application to DEMs generated by linear interpolation
in 1D. Results from a case study are then reported. The article ends by discussing the
implications of the new methodology to DEM generation and quality control.

2 Challenges to Statistical Methodology

2.1 DEM Error Composition

To understand the fundamental challenges to statistical methodology, it is necessary first
to clarify the nature and composition of DEM vertical error. Supposing T is a location,
its vertical error DZT is the difference between the estimated elevation ZT and the true
elevation zT, i.e. DZT = ZT - zT. DZT is the sum of two components: interpolation error RT

and propagation error dT (Li 1993, Huang 2000, Hu et al. 2009a). Interpolation error is
entirely due to the imperfection of the interpolation function and has nothing to do with

398 X Liu, P Hu, H Hu and J Sherba

© 2012 Blackwell Publishing Ltd
Transactions in GIS, 2012, 16(3)



the source data. For example, when a flow line is approximated by a straight line
(Figure 1) as in the case of linear interpolation in 1D, there is always an error even if the
source data is perfect. If we use HT to denote the elevation estimated using error-free
source data, its deviation from the true elevation zT defines interpolation error RT, i.e. RT

= HT - zT. In reality, source data nearly always contain some errors such as random error,
gross error, or measurement errors due to the confounding influences of canopy and
ground vegetation, surface debris, buildings, and other objects, etc. The actual elevation
recorded in a DEM is thus not HT but ZT. The difference between the two is the
propagation error, i.e. dT = ZT - HT. Propagation error dT describes how errors in the
source data are propagated to T through interpolation. It depends on both the source
data error and the interpolation function. Note dT should not be confused with
Huevelink’s (1998) propagation error which refers to the propagation of DEM error (i.e.
DZT) to subsequent applications in environmental modeling and GIS.

2.2 Error Type of Each Component

According to error theory, there are three types of errors – random error, systematic
error, and gross error. To understand the challenge to statistical methodology, the key is
to articulate which type of error that propagation error and interpolation error belong to.
In the literature, some studies have assumed both of them are random errors (Li 1993,
Huang 2000, Aguilar et al. 2006) while the others suspected the existence of systematic
error (Oksanen and Sarjakoski 2006). The research by Hu et al. (2009a) concludes that
interpolation error is systematic error because its sign and magnitude are fixed. In the
case of linear interpolation in 1D, interpolation error is always negative (i.e. underesti-
mation) if the flow line in Figure 1 is convex and always positive (i.e. overestimation) if
the flow line is concave. There is no randomness about the sign of interpolation error.
Similarly, the magnitude of the interpolation error at a location is also fixed because its
true elevation (zT) and that estimated using error-free source data (HT) are both deter-
mined values albeit unknown. Propagation error, on the other hand, is random error

Figure 1 Linear interpolation in 1D. Note the convex flow line is approximated by a
straight line, thus introducing a negative interpolation error
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under the best scenario that no systematic or gross error exists in the source data.
Otherwise, it is not random error either but a mixture of random, systematic, and even
gross error. Note, systematic and gross error in the source data may come from several
sources. In that case, propagation error can be written as the sum of random error and
each systematic error and gross error.

2.3 Challenges to Variance or RMSE Methodology

That interpolation error is systematic error determines that the vertical error at a location
(DZT), which is the sum of interpolation and propagation error, cannot be random error.
Rather, it is a mixture of random and systematic error or even gross error. This directly
challenges the applicability of error propagation theory which, as mentioned previously,
is the rationale behind the most popular methods of using variance and RMSE to assess
DEM vertical accuracy. Error propagation theory was first used by Greenwalt and
Schultz (1962) to assess cartographic and geodetic data. According to the theory, if an
error is the sum of several components (e.g. DZT = dT + RT), each term can be quantified
by its variance. Better yet, the variance of the total error is the sum of the variances of
each component, e.g. σ σ σδΔz RT T T

2 2 2= + . This is the rationale behind the extensive use of
variance and RMSE, which is equivalent to the square root of variance, in the literature.

However, error propagation theory hinges on a critical assumption that all error
components are random error and independent of each other. Thus, in order to apply
error propagation theory to DEM vertical accuracy, both propagation and interpolation
error must be random error and independent of each other. Previous discussion has shown
that interpolation error is not random error but systematic error, and propagation error
may or may not be completely random error. Moreover, both interpolation and propa-
gation error depend on the interpolation function, thus they are not necessarily indepen-
dent. These reasons determined that error propagation theory is not applicable to DEM
vertical error assessment. The validity of variance and RMSE are thus questionable.

In the literature, many studies have expressed concerns about RMSE based on their
empirical observation that DEM errors do not seem to have a normal distribution (Fisher
1998, Wise 2000, Bonin and Rousseaux 2005, Oksanen and Sarjakoski 2006). It has to
be pointed out that, while DEM errors are indeed not normally distributed, this is not the
fundamental reason why RMSE is problematic. The fundamental reason is that DEM
error is not random error but a mixture of random and systematic error or even gross
error, consequently error propagation theory cannot be used to justify RMSE.

2.4 Challenges to Other Statistical Methodology

As a remedy to RMSE, other statistical methods have been proposed. One example is the
modification to NSSDA proposed by the National Digital Elevation Program (NDEP
2004) by using the 95th percentile in areas where a normal-distribution error cannot
be attained. A similar standard is used by FEMA to assess LiDAR-derived DEMs (FEMA
2010). Other statistics such as sample mean, range, maximum have also been proposed.
While these methods, which do not require normal-distribution error, are an improve-
ment, they do not solve the problem completely.

Central to much statistical inference is the assumption that observations are indepen-
dent and have identical probability distributions. In the context of DEM error, this means
the vertical errors from different locations must be from the same population. From the
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discussion in Section 2.1, we known vertical error DZT consists of propagation error dT and
interpolation error RT. Under the simplest situation, that source data is free of systematic
and gross error, propagation error is random error. Random error typically has a normal
distribution with mean of 0, therefore there is δ σT TN~ ,0 2( ) where σT

2 is the variance of
T’s propagation error. Interpolation error RT is a constant, because its sign and magnitude
are determined as explained previously. As the sum of these two errors, DZT also has a
normal distribution, i.e. ΔZ N RT T T~ , σ 2( ). However, the value of RT and sT vary from
location to location. The population of DEM vertical errors, denoted by {DZT} is thus made
up by individuals from various normal distributions. From a statistical perspective, a
population of such individuals is unlikely to have a normal distribution. This explains why
so many studies have observed non-normal distributions of DEM vertical errors.

That DEM errors are unlikely to have a normal distribution explains why NSSDA’s
approach, which computes the 95% confidence interval of the vertical errors as
1.96*RMSE, is problematic. The modification proposed by NDEP (2004) to use the 95th

percentile is an improvement. The point of the 95th percentile is to inform that 95% of the
errors are expected to be at or below this value. Apparently, the validity of the 95th

percentile depends heavily on whether the samples truly represent the population. A small
sample size of 30 is acceptable if individuals are from an identical population of normal
distribution; otherwise, substantially more samples are necessary. Previous discussion has
established that DEM errors are neither identically distributed nor from a normal
distribution. Rather, it is expected to be smaller in flat terrain and larger in complex terrain.
Hence unless all types of terrain are well sampled, the 95th percentile obtained from
checkpoints will not describe the overall accuracy of a DEM. Existing standards only
require a rather small sample size of 20 or more in each major land cover category. Whether
these checkpoints can truly represent the entire terrain is thus a key challenge. In real-world
applications, complex terrain is more difficult to access thus tends to be undersampled.
This presents the risk that the 95th percentile obtained may overestimate DEM accuracy.

That vertical errors are not from an identical population also presents a challenge
to geostatistical methodology. A central assumption in geostatistics is the stationarity
of a process, meaning the mean and standard deviation of the process do not change
in space. This does not always hold in the context of DEM error. As shown previously,
each vertical error is from an individual normal distribution where the mean is the
interpolation error and the variance is the variance of the propagation error,
i.e. ΔZ N RT T T~ , σ 2( ). Since RT and sT vary from location to location, the stationarity
assumption cannot be satisfied. This confirms the concern expressed by Oksanen and
Sarjakoski’s (2006) on using stationarity-based statistical methods to model DEM error.

In light of the reality that DEM error is not random error, not stationary, and not
from an identical normal distribution, statistical methods including geostatistics are only
appropriate if substantial numbers of checkpoints are used. Since this is rarely feasible in
empirical analyses, non-statistical methods must be explored.

3 Overview of Approximation Theory

A viable non-statistical methodology is approximation theory which is routinely used in
computational science to study how to approximate a complex function z(x) using simpler
functions Z(x) and quantitatively characterize the errors introduced therein (Atkinson and
Han 2004). For example, supposing function z(x) = sin(x) is to be approximated by linear
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polynomial Z(x) = ax + b based on a set of reference points. The typical strategy is to use
piecewise interpolation by dividing z(x) = sin(x) into segments, each of which is then
approximated by a line (Figure 2). The accuracy of the approximation in a segment s is
measured by the largest error at a point in this segment, i.e. max|z(x) - Z(x)|, x ∈ s. The
overall accuracy of the approximation is determined by the largest error of any point in the
entire domain, i.e. max(|z(x) - Z(x)|). The rationale behind approximation theory is
simple: If the largest error is acceptable, the error at any other point must be also
acceptable, hence the accuracy of the overall approximation is guaranteed.

In the context of DEM generation, terrain is the complex function z(x, y), DEM
generation method is the approximation function Z(x, y). Z(x, y) is typically a piecewise
function, i.e. it divides terrain into consecutive patches so that DEM generation can be
conducted patch by patch. The vertical error at a location is |Z(x, y) - z(x, y)|. According
to approximation theory, the overall accuracy of the DEM is controlled by the largest
error at any location in any patch, i.e. max|Z(x, y) - z(x, y)|. Note this maximum is not
the statistical maximum but the maximum of the entire area covered by the DEM.

Based on approximation theory, Hu et al. (2009a) presented a framework on how to
assess the vertical accuracy of DEMs created by different interpolation methods. Of
relevance to this article is linear interpolation in 1D which is illustrated in Figure 1.
Supposing a and b are two reference points whose elevation values are Za and Zb

respectively, the elevation at a location T is estimated by

Z Z ZT a a b b= +ω ω (1)

ω ω ω ωa b a b+ = ≥1 0, , (2)

where wa (or wb) is the proportion of segment xbxT (or xaxT) in xaxb. Linear interpolation
in 1D is the optimal method of generating a DEM from contour intervals because it
results in minimum interpolation error and does not amplify the errors in the source data
(Hu et al. 2009a). Better yet, it preserves elevation orderliness proactively so that the
resultant DEM has minimal artifacts and correct flow directions (Hu et al. 2009b).

Figure 2 Approximation of a function using piecewise interpolation
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As shown previously, the vertical error at a point T is the sum of propagation error
(dT) and interpolation error (RT). According to approximation theory, the overall accu-
racy of a DEM is determined by max|dT + RT| which is bounded by max|dT| + max|RT|.
Using simple algebra and intermediate calculus, the results in Table 1 can be obtained
(Hu et al. 2009a). max|dT| is bounded by max|dnode| where dnode is the error in the reference

data used to interpolate T, e.g. a and b in Figure 1. |RT| is bounded by max
1
8

2
2M h where

M2 is the maximum norm of the second-order derivative in the flow path and h is the
horizontal distance of the flow path. In the context of terrain, the second-order derivative
describes how fast slope gradient changes, M2 is thus equivalent to concavity or convex-
ity. h describes the density of reference data. When sample elevations are abundant,
the value of h is small. Table 1 articulated why DEM error is correlated with terrain
complexity and sampling density, which has been observed by numerous studies (e.g.
Oksanen and Sarjakoski 2006, Carlisle 2005). It also points out that it is concavity or
convexity that is correlated with DEM error, not other terrain derivatives such as slope
or aspect.

4 Approximation Theory Illustrated

4.1 Study Area and Data

To illustrate how Table 1 can be applied in empirical analyses, a case study is conducted
to assess the vertical accuracy of a DEM generated from a topographic map. The spatial
extent of the DEM is about 2.5 by 2.5 arc-minutes, covering the northern portion of the
USGS 7.5-minute topographic quad of San Francisco South (Figure 3). The topographic
map has a scale of 1:24,000 and contour interval of 25 feet. The elevation ranges from
0 to 925 feet. Various geomorphological types are found in the area including hills,
valleys, lakes, and depressions, providing an excellent test of DEM generation and
quality control. The social, economic, and ecological prominence of the area also means
its DEM accuracy may have various implications.

Using the contour lines and spot elevations in the topographic map, a DEM was
created using linear interpolation in 1D. During implementation, intermediate contour
lines were generated recursively based on the concept of a weighted Voronoi diagram.
The Voronoi diagram is a tool which partitions the space into regions such that all points
in the region centered around a feature are closer to it than to any other features

Table 1 Vertical error in a DEM generated by linear inter-
polation in 1D

Vertical error at a point: DZT = dT + RT

dT: propagation error |dT| � |dnode|

RT: interpolation error R M hT ≤ 1
8

2
2

DEM vertical error: max(|RT| + |dT|) � max|RT| + |dT|
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(Aurenhammer 1991). The equidistant boundary between adjacent regions is called the
Voronoi boundary. In the context of DEM generation, contour lines and spot elevations
are the features. Their elevation values are the weights associated with them. Supposing
there are two contour lines of 100 and 200 feet, their Voronoi boundary is then the
150-foot contour line. Similarly, the Voronoi boundary between a 100- and 150-foot
contour line is a 125-foot contour line. The recursive process may continue until there is
no further need of intermediate contour lines. Based on this idea, a raster-based algo-
rithm similar to that in Cuisinaire and Macq (1999) was applied to generate the
intermediate contour lines. The result is a DEM of 3.75 m spatial resolution. The choice
of the spatial resolution is based on the 0.15 mm graphic resolution of the scanned
contour lines. Given that points less than 3.75 m apart on the ground are not differen-
tiable on the map, it is reasonable to assume that every point on the topographic map has
been transferred to the 3.75 m DEM. The DEM is thus expected to have high accuracy
and introduces minimal error when being used to estimate M2 in Section 4.3.

In the next section, we illustrate how to assess the vertical accuracy of this DEM
based on approximation theory, as presented in Table 1. Since the vertical accuracy is
determined by the largest error at any location in the DEM, and the error at a location
is the sum of propagation and interpolation error, the following section explains how to
assess each error.

4.2 Propagation Error Assessment

The propagation error at a location T is bounded by the larger error in the source data
used in its interpolation, e.g. the error in location a or b in Figure 1. The source data in
this study is the 7.5-minute topographic map. The traditional assumption is that vertical
errors in topographic maps are random error following a normal distribution, an
assumption generally true for contours compiled by photogrammetry (Maune 2007).
The mean of the normal distribution is expected to be 0. Its standard deviation can be
inferred from the National Mapping Accuracy Standard (NMAS) (U.S. Bureau of the
Budget 1947) which is used by USGS to control the quality of its topographic maps.
According to NMAS, “no more than 10 percent of the elevations tested shall be in error

Figure 3 Terrain of the study area
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by more than one-half the contour interval.” Since a half interval is 12.5 ft in this study,
it can be inferred that the standard deviation of the error in source data is 7.6 ft. Given
that 99.95% samples in a normal distribution are smaller than 3.29 standard deviations,
the bound of the error in the source data can be set as 25 ft, i.e. no error in the
topographic map may exceed one contour interval. Note this error bound is a very
conservative estimate; it is very likely to overestimate the largest error in the source data.
A more accurate estimate is to use USGS’s method by selecting 20 or more well-defined
checkpoints and then calculates the error by field visit using high precision devices such
as GPS.

4.3 Interpolation Error

The interpolation error at a point T (RT) is bounded by
1
8

2
2M h where M2 is the

maximum norm of the second-order derivative at a point and h is the horizontal length
of the line segment used to interpolate T. This article introduces two methods to estimate
|RT|. The first one uses contour lines only, therefore is suitable for a pre-assessment before
a DEM is generated. In Figure 4, assume a water drop flows downhill crossing a number
of contour lines of Z2, Z1, and Z0. Let T be a point on the flow path between Z0 and Z1,
and the contour interval is denoted by cl. M2 can be approximated by the slope change
rate at Z1, i.e.

M

Z Z
d

Z Z
d

d
cl

d d
d d d

2

2 1

12

1 0

01

02

01 12

01 12 02

≅

− − −

= − (3)

Considering that d02 = d01 + d12 in Equation 3, the interpolation error at T (RT) is bounded
by:

Figure 4 Estimation of M2 using contour lines

Approximation Theory Applied to DEM Vertical Accuracy Assessment 405

© 2012 Blackwell Publishing Ltd
Transactions in GIS, 2012, 16(3)



R M h cl
d d
d d d

d
cl d

d
d
d

T ≤ = − = −⎛
⎝⎜

⎞1
8

1
8 8

12
2 01 12

01 12 02
01
2 01

02

01

12

. .
⎠⎠⎟

(4)

The value of d01 and d12 are the horizontal distances between adjacent contour lines.
Their ratio d01/d12 describes how fast slope changes in the area, and indicates the density
of contour lines. With simple mathematics, Equation 4 can be rearranged to obtain the
results in Table 2. It can be seen that as d01/d12 increases, RT also increases but remains
small. For example, as long as d01/d12 is less than 4, RT is bounded by one-third of the
contour interval. Even when d01/d12 reaches 10 which is extremely high, RT is still only
slightly more than one contour interval. In our study, we found that d01/d12 is less than 1.5
in 72% of the cells calculated; less than 3 in 92% of the cells calculated; and less than 5
in 99% of the cells calculated. Extreme values such as 10, are very rare but do exist, as
illustrated in Figure 5. These areas are where the largest interpolation errors are likely to
occur, therefore they should be paid more attention during accuracy assessment. If one
wishes to reduce the potentially high errors in these areas, an effective strategy is to
collect additional reference elevations in between the contour lines and incorporate them
in DEM generation.

The above method is valuable to obtain an assessment before DEM generation. If the
DEM is already generated, RT can be assessed by another method. In Figure 6, assume E
is the cell under consideration. Its M2 can be obtained by finding the maximum slope
change rate (i.e. slope of slope which is equivalent to curvature) in its 3 by 3 neighbor-
hood, i.e. M2 = max{|curvN-S|, |curvW-E|, |curvNW-SE|, |curvNE-SW|}.

The curvature in the north-south direction can be obtained by:

curv
slope slope

r

Z Z
r

Z Z
r

r
N S

E B H E

− = − =

− − −
1 2

2 2
(5)

Similarly, the slope change rate in the northeast-southwest direction is:

curv
slope slope

r

Z Z

r

Z Z

r
r

NE SW

E C G E

− = − =

− − −
1 2

2 2
2 2

2 2
(6)

Table 2 Estimation of interpolation error based on the
horizontal distance ratio between adjacent contour lines

If d01/d12 is less than
Interpolation error
is bounded by

1.5 0.04 * cl
2 0.084*cl
3 0.18 * cl
4 0.30 * cl
5 0.417* cl
10 1.023* cl
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The two other directions can be obtained in a similar manner. We applied this
method to the 3.75 m DEM obtained by linear interpolation, and found M2 values ranged
between 0 and 2.5. Since h in a 3 x3 neighborhood is the horizontal distance
in the direction with the maximum slope change rate, the interpolation error bound
1
8

2
2M h can be obtained for each pixel (Figure 7). In our study, it is found that 90% of

the cells have an interpolation error bounded by 8.3 ft which is equivalent to one third
of the contour interval; 6.25% cells have an interpolation error bounded between 8.3 ft
and 12.5 ft, which is equivalent to one-third and one-half contour interval, respectively.
Values larger than 12.5 ft, which are very few, are located in the boundary areas. These

Figure 5 An example area where horizontal distance ratio between adjacent contour
lines (d01/d12) exceeds 10

Figure 6 Estimation of M2 using a DEM
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values can be expected to drop if contour lines immediately outside the study area were
included during DEM generation. In terms of spatial distribution, hilly area with greater
slope change rate tends to have larger interpolation error. This confirms the results from
the first method on using contour lines only.

4.4 Implications for DEM Quality Control

Vertical accuracy is an important aspect of DEM quality. That approximation theory is
able to estimate propagation and interpolation error separately offers effective guidance
to DEM production and quality control assuming a DEM user requires that the vertical
error at any point should not exceed a threshold value. Since the total error bound at
each point, which is the sum of the propagation and interpolation error, is available, the
DEM producer can easily check whether the requirement is met. In areas with excessive
errors, the producer can identify the cause by comparing propagation error with inter-
polation error. In the case that propagation error is dominant, the producer needs to
improve the quality of the source data. On the other hand, if interpolation error is found
to be the main cause, the producer can identify the location of large interpolation errors
and reduce it by inserting additional samples in those areas before interpolation is
conducted. Compared with RMSE, which is the existing method to control DEM vertical
error, approximation theory is much more informative and effective. RMSE only offers
a single summary statistic for the entire DEM based on a limited number of checkpoints.
In the case that DEM quality is not satisfactory, the producer has no idea about the cause
and how to improve it. In contrast, approximation theory not only provides an estimate
of the error bound for each point in the entire study site, but also reveals where large
errors are likely to occur; hence, pointing out how to effectively improve a DEM’s
vertical accuracy if one wishes.

5 Conclusions

As a pivotal indicator of DEM quality, DEM vertical accuracy has been studied
by numerous researchers. Among the various methods developed, most are statistics

Figure 7 Interpolation error bound in the study area with index contour lines overlaid
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oriented despite concerns as to its effectiveness and validity. This article pointed out for
the first time that it would be very challenging to continue the statistics paradigm because
DEM errors are not random error, not normally distributed, not identically distributed,
and not stationary. These characteristics determined that a very large number of check-
points are necessary in order to assure the statistical validity. Unfortunately, this require-
ment is rarely met in real-world applications.

In this article, we presented approximation theory as a new methodology and
illustrated how it can be applied to the accuracy assessment of a DEM generated by
linear interpolation using contour lines as the source data. The results show that linear
interpolation in 1D is an excellent interpolation method. Nearly all of the cells in our
study area have an interpolation error less than 12.5 ft which is half the contour interval.
Our research also points out that the terrain characteristic that directly determines
interpolation error is the ratio between the horizontal distances of adjacent contour lines.
Areas such as foothills are thus where large interpolation errors are likely to occur. It is
impossible to change terrain characteristics, but interpolation error can always be effec-
tively reduced by increasing sample density.

While the case study in this article is based on a DEM created by linear interpolation
using topographic maps as the source data, the approximation theory methodology is
applicable to other DEMs created by interpolation, e.g. LiDAR-derived DEMs. Hu et al.
(2009a) has outlined the propagation and interpolation error bound for this type of
DEMs generated by TIN interpolation, and the preliminary results from a case study are
reported in Liu and Sherba (2012). Future research will expand the methodology to other
interpolation methods such as bilinear interpolation in a rectangle which is often used in
DEM resampling.

References

Aguilar F, Aguilar A, Aguera F, and Sanchez J 2006 The accuracy of grid digital elevation models
linearly constructed from scattered sample data. International Journal of Geographical Infor-
mation Science 20: 169–92

Aguilar F, Mills J, Delgado J, Aguilar M, Negreiros J G, and Pérez J 2010 Modelling vertical error
in LiDAR-derived digital elevation models. ISPRS Journal of Photogrammetry and Remote
Sensing 65: 103–10

Atkinson K and Han W 2004 Elementary Numerical Analysis. Chichester, John Wiley and Sons
Aurenhammer F 1991 Voronoi diagrams: A survey of a fundamental geometric data structure.

ACM Computing Surveys 23: 345–405
Bonin O and Rousseaux F 2005 Digital terrain model computation from contour lines: How to

derive quality information from artifact analysis. GeoInformatica 9: 253–68
Carlisle B 2005 Modelling the spatial distribution of DEM error. Transactions in GIS 9:

521–40
Cuisenaire O and Macq B 1999 Fast Euclidean distance transformation by propagation using

multiple neighborhoods. Computer Vision and Image Understanding 76: 163–72
FEMA 2010 LIDAR Specifications for Flood Hazard Mapping. WWW document, http://

www.fema.gov/plan/prevent/fhm/lidar_4b.shtm
FGDC 1998 Geospatial Positioning Accuracy Standards: Part 3, National Standards for Spatial

Data Accuracy. Washington, D.C., Federal Geographic Data Committee
Fisher P F 1998 Improved modeling of elevation error with geostatistics. GeoInformatica 2: 215–

33
Gesch D 2007 The National elevation dataset. In Maune D (ed) Digital Elevation Model Tech-

nologies and Applications: The DEM User’s Manual (Second Edition). Falls Church, VA,
American Society of Photogrammetry and Remote Sensing: 449–73

Approximation Theory Applied to DEM Vertical Accuracy Assessment 409

© 2012 Blackwell Publishing Ltd
Transactions in GIS, 2012, 16(3)



Greenwalt C and Schultz M 1962 Principles of Error Theory and Cartographic Applications.
St. Louis, MO, U.S. Air Force, Aeronautical Chart and Information Center Technical Report
No. 96

Hu P, Liu X, and Hu H 2009a Accuracy assessment of digital elevation models based on approxi-
mation theory. Photogrammetric Engineering and Remote Sensing 75: 49–56

Hu P, Liu X, and Hu H 2009b Isomorphism in digital elevation models and its implication to
interpolation functions. Photogrammetric Engineering and Remote Sensing 75: 713–21

Huang Y 2000 Evaluation of information loss in digital elevation models with digital photogram-
metric systems. Photogrammetric Record 16(95): 781–91

Huevelink G 1998 Error Propagation in Environmental Modeling and GIS. London, Taylor and
Francis

Kyriakidis P C and Goodchild M F 2006 On the prediction error variance of three common spatial
interpolation schemes. International Journal of Geographical Information Science 20: 823–56

Li Z 1993 Theoretical models of the accuracy of digital terrain models: An evaluation and some
observations. Photogrammetric Record 14(82): 113–28

Liu X and Sherba J 2012 Accuracy assessment of LiDAR-derived DEM based on approximation
theory. In Proceedings of the Annual Conference of American Society of Photogrammetry and
Remote Sensing, Sacramento, California

Maune D 2007 DEM user requirements. In Maune D (ed) Digital Elevation Model Technologies
and Applications: The DEM User’s Manual (Second Edition). Falls Church, VA, American
Society of Photogrammetry and Remote Sensing: 449–73

NDEP 2004 Guidelines for Digital Elevation Data Version 1. WWW document, http://
www.ndep.gov/NDEP_Elevation_Guidelines_Ver1_10May2004.pdf

Oksanen J and Sarjakoski T 2006 Uncovering the statistical and spatial characteristics of fine
toposcale DEM error. International Journal of Geographical Information Science 20: 345–69

Shi W Z, Li Q Q, and Zhu C Q 2005 Estimating the propagation error of DEM from higher-order
interpolation algorithms. International Journal of Remote Sensing 26: 3069–84

Tempfli K 1980 Spectral analysis of terrain relief for the accuracy estimation of digital terrain
models. ITC Journal 3: 478–510

U.S. Bureau of the Budget 1947 United States National Map Accuracy Standards. Washington
D.C., U.S. Bureau of the Budget.

Wise S 2000 Assessing the quality for hydrological applications of digital elevation models derived
from contours. Hydrological Processes 14: 1909–29

410 X Liu, P Hu, H Hu and J Sherba

© 2012 Blackwell Publishing Ltd
Transactions in GIS, 2012, 16(3)



Copyright of Transactions in GIS is the property of Wiley-Blackwell and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


