GM trees threaten the global environment

                 Tuesday 9 November 1999

                 Genetically modified tree trials are rapidly
                 increasing in number around the world
                 without proper controls, says a new report by
                 WWF. The trials pose a serious risk to the
                 global environment and, the report concludes,
                 commercial production of GM trees is likely to
                 happen in Latin America and Asia - despite
                 inadequate research into their environmental

                                           The report highlights
                                           the serious threat of
                                           genetic pollution:
                                           pine pollen, for
                                           example, can travel
                                           up to 600
                                           kilometres (see
                                           map below). GM
                                           trees are also long
                                           living, increasing the
                 likelihood of genetic pollution and the risk of
                 harmful impacts on the forest ecosystem. So far
                 there have been five GM tree trials in the UK, all
                 of which have failed to consider the environmental
                 impacts on soil, water and wildlife.

                 WWF is calling on the British government to
                 reduce the risk of genetic pollution, and for
                 environmental impact assessments to be
                 conducted before any commercial release of GM

                 "Once the GM genie is out of the bottle there is
                 no going back" warned Francis Sullivan, WWF's
                 Director of Programmes. "This technology must
                 only be used if we are confident that it will not
                 have a negative impact on forests and the wildlife
                 and people they support."

                 Since 1988 there have been at least 116 GM tree
                 trials involving 24 species in 17 countries. The late
                 1990s have seen a huge increase in both the
                 number of GM trials and species tested. In the
                 last three years the number of tree trials has
                 doubled, with 44 new trials in 1998 alone. GM
                 trees are likely to make their commercial debut in
                 Chile, China and Indonesia.

                 Among the risks posed by GM tree technology

                     The possible instability of an introduced gene
                     which may have unintended side effects on
                     the tree and forest eco-system;
                     The engineering of GM trees with a
                     competitive advantage, which could create
                     Trees engineered for sterility would support
                     far less biodiversity;
                     GM trees engineered for pest resistance and
                     herbicide tolerance may have unintended
                     impacts on non-target species.

                 The remote location of many tree crops also
                 makes them more difficult to monitor and
                 increases the chances of genetic pollution
                 because they are often located near natural

                                            "It is far too early
                                            to judge whether
                                            biotechnology can
                                            make a safe and
                                            contribution to the
                                            forest sector" said
                 Director of the Forests Programme at WWF
                 International. "Governments must declare a
                 moratorium on the commercial release of GM
                 trees until enough research has been conducted
                 and proper safeguards put in place."

                 WWF is recommending :

                     A global moratorium on the commercial
                     release of GM tree species;
                     Strengthened regulations for field testing to
                     examine the long-term environmental impact
                     of GM tree species;
                     An open public debate on the future of GM
                     tree technology;
                     A watertight and robust protocol within the
                     Convention on Biodiversity that serves as the
                     foremost international agreement on GMOs;
                     A comprehensive programme of research on
                     which credible decisions can be based.

Summary: GM technology in the forest sector
A scoping study for WWF

Rachel Asante Owusu

November 1999

[Note: An Acrobat version complete with tables and maps of this executive study and the entire study are available from the WWF:]

Executive Summary:

GM technology in the forest sector

· A moratorium on the commercial release of genetically modified tree species
· Regulations for field testing strengthened to examine the long-term environmental impact of
GM tree species
· An open public debate concerning biotechnology in the forest sector that is concluded in
transparent government policy
· A watertight and robust Biosafety Protocol within the Convention on Biodiversity that
serves as the foremost international agreement on GMOs
· A comprehensive programme of research on which credible decisions can be based

While GM food crops may be under siege or even in trouble, the seeds of a quiet GM revolution
are being sown in the world’s forests. Biotechnology companies have linked up with key
players in the industrial forest sector to support research that will increase tree growth rates,
modify wood structure, alter trees’ reproductive cycles, improve tolerance to certain herbicides
and perhaps store more of the gases that are responsible for climate change.
While forest-related biotech research is still in its infancy compared with that taking place in
agriculture, field trials of GM trees have proliferated around the world during the second half of
the 1990s. Worryingly, these trials - and perhaps soon commercial production - are taking place
against a backdrop of national and international regulation that is wholly inadequate for long-lived
organisms such as trees.
This document is a summary of a scoping study entitled GM Technology in the Forest Sector,
carried out on behalf of WWF. The report seeks to ascertain the degree to which GM
technology has already impacted upon the forest sector, and to evaluate its future potential.
Our understanding of tree biology is poor compared with that of agricultural crops: scientists
have been researching the genetics, physiology and ecology of the main food crops for longer
and with more resources. Furthermore, individual trees remain much longer in the landscape
than short-lived agricultural crops. This means that any one tree is subject to a much wider
range of environmental stresses, and these stresses can in turn affect the behaviour of the
modified genome. At present, nobody can confidently quantify the environmental risks
surrounding genetically modified trees.
If the long-term risks of GM trees are unknown, the same cannot be said for technology that
results in more intensive production methods. From the loss of hedgerows, through the
2 Summary: GM technology in the forest sector
poisoning of rivers to BSE, rural landscapes during the late 20th century have been radically
impacted upon by technologies that promised more for less. The commercial application of GM
trees will mark a move towards greater intensification of plantation silviculture. Shorter, more
intensive rotations of tree crops will place greater demands on soil nutrients and available
ground water, and may ultimately threaten the long-term sustainability of plantation lands,
especially in the tropics.
WWF believes that the role of biotechnology in the forest sector should be resolved through
constructive dialogue rather than confrontation. Although we urge governments to declare a
moratorium on the commercial release of GM trees, we encourage the industrial forest sector to
do the same voluntarily. WWF believes that the process of regulation and supervision of GM
trials must be made more open and transparent, and that adequate provision should be made to
involve civil society in this process by opening the debate to the public. Continuing field trials
must be redesigned to examine broader environmental impacts, and more research is required to
fill gaps in our understanding of tree biology and ecology. Any decision as to whether
biotechnology has a role in commercial forestry should only be made once the risks involved
are properly identified and quantified.

2 Global trends

Since 1988 there have been 116 confirmed GM tree trials around the world (see Figure 1). Data
analysis shows that the growth in trials and the number of species used has risen sharply since
1995. There is a clear North-South divide concerning the nature of the trials and the type of
institutions involved. In North America and the European Union research is typically under the
auspices of government and academia while in the countries of Latin America, Africa and
South-east Asia, research is being driven by the private sector.
There are no reliable reports of commercial production of GM trees, although unconfirmed
information suggests that commercial-scale “trials” of GM trees are taking place in China. A
number of indications point to forest biotechnology progressing from minor to major league.
Most important is the increasing number of joint ventures between forestry and biotech
companies (see box 1). The evidence that WWF has collated suggests that commercial GM
plantations could well make their debut over the next two years, probably in Brazil, Chile,
China or Indonesia, and backed principally by private (northern) capital.
Summary: GM technology in the forest sector 3
The first confirmed record of a wild release of a genetically modified tree species is that of a
poplar trial in Ghent, Belgium, in 1988. The first half of the 1990s witnessed a modest growth
in research trials that never exceeded five per year. The latter half of the decade has seen an
exponential increase both in the number of trials and in the number of species tested. In 1998,
the last year sampled, there were 44 new trials - an increase of more than 50 per cent on the
cumulative total of all preceding GM tree trials (see Figure 1).

Box 1: Forestry-biotech joint ventures: a prelude to commercial production
Fletcher Challenge Forests, International Paper, Monsanto and Westvaco This joint venture,
announced on 6 April 1999 and worth US$ 60 million over five years, is perhaps the best known of the
three forest-biotech consortia. It will seek to acquire genomic forestry intellectual property rights from
universities, independent laboratories and others in order to position itself to market new advances in
forest biotechnology. Its main area of interest concerns plantation species such as poplar, radiata and
loblolly pine and eucalyptus. Targeted genetic improvements are herbicide tolerance, improved growth
rates and product uniformity (especially fibre quality). Of all three consortia, its primary objective appears
to be the capture, application and marketing of genetic patents.
Monfori Nusantra Established in 1996, this Indonesian company is a joint venture between Monsanto and
ForBio, an Australian plant biotechnology company. The primary objective is wood fibre production. A new
automated plant that enables mass propagation of planting stock from tissue culture has already been
opened. The aim is to produce 10 million seedlings a year. Five trial sites have been established in
Sumatra and Kalimantan, and initial results indicate that the rotation for species such as teak, acacia and
eucalyptus could be halved. Little has been heard of the initiative over the past year and its plans may
have suffered as a result of the Asian economic crisis. Nevertheless, the ForBio website still publicises the
GenFor SA Announced on 10 March 1999 and worth an initial investment of US$ 5 million, this is a joint
venture between Fundación Chile, Interlink Associates (USA) and Silvagen Inc (Canada). The consortium
is partly financed by the Chilean Development Agency (Corfo) and seeks to focus primarily on the
development of transgenic radiata pine that has enhanced pest and disease resistance, faster growth
rates and better pulping qualities. The first field trials of transgenic radiata pine will probably be for
resistance to European shoot moth and are due to commence in early 2000.

There are now at least 24 species that have been subject to transgenic modification and released
into the environment through field trials (see Table 1).
Table 1: GM tree species that have been released into the environment through field trials.
Common name Scientific name Year of release
European aspen Populus tremula 1988
American black walnut Juglans nigra 1989
Papaya Carica papaya 1991
Apple Malus domestica 1991
European sweet chestnut Castanea sativa 1992
Plum Prunus domestica 1992
Red River gum Eucalyptus camaldulensis 1993
Black spruce Picea mariana 1993
Sweetgum Liquidambar styraciflua 1994
European black poplar Populus nigra 1995
Silver birch Betula pendula 1996
American chestnut Castanea dentata 1996
Sweet orange Citrus spp. 1996
Tasmanian blue gum Eucalyptus globulus 1996
Norway spruce Picea abies 1996
Scots pine Pinus sylvestris 1996
Acacia mangium Acacia mangium 1997
Monterey pine Pinus radiata 1997
Teak Tectona grandis 1997
Flooded gum Eucalyptus grandis 1998
Olive Olea europea 1998
Eastern cottonwood Populus deltoides 1998
Quaking aspen Populus tremuloides 1998
Cherry Prunus avium 1998
Other sources have reported more extensive lists of transgenic tree species, including almond
(Prunus amygdalus), cocoa (Theobroma cocoa), coffee (Coffea arabica), elm (Ulmus spp.),
larch (Larix spp.) and pear (Pyrus communis). However, no independent verification of field
trials for these species could be obtained, and it is likely that some of these additional reports
refer only to greenhouse trials.

3 Environmental risks

Insertion of an introduced gene can have collateral impact on the rest of the host’s genome,
resulting in unintended side effects. Most of the time such collateral effects will be immediately
identifiable but in some instances it may alter the behaviour of silent genes - those that are
activated under certain circumstances such as climatic extremes, insect attack and so-on. As
trees are long-lived species it is probable that they may be subject to such environmental
triggers during their lifetime. Present field trials do not address this issue, nor do they examine
the long-term stability of the introduced gene.
Most tree plantations are grown on marginal agricultural or ex-forest land in remote locations.
In addition, tree crops are less intensively managed than agricultural crops. Remote locations
and less intensive management regimes not only mean limited opportunities for monitoring,
control and enforcement of regulations, but they also make early detection of unanticipated
problems (such as those highlighted above) less likely.
In instances where plantations, or trials, of GM tree species are established close to pools of
naturally-occurring wild relatives, the likelihood of genetic pollution will be high. With the
exception of trees engineered for sterility, gene flow cannot be prevented: for example, pollen
from pine can travel distances in excess of 600 km, and it would be surprising if some novel
gene has not already escaped from field trials presently under way.
A combination of time and location factors would allow escaped GM trees engineered for fast,
aggressive growth to become invasive weeds with the ability to out-compete naturally-occurring
vegetation for sunlight, water and nutrients.
Some scientists have recommended sterility as a means of controlling gene pollution, but the
long-term stability of such a trait can never be 100 per cent guaranteed. Even if it could be, the
prospect of sterile GM plantations is equally problematic, for although plantations are poor
imitations of natural forest they may be the only repository of remnant, forest-dependent insect
life in a particular locality. Remove the flowers, fruits and cones and the plantation, to all intents
and purposes, becomes sterile itself.
Summary: GM technology in the forest sector 7
The introduction of trees modified for rapid growth could cause shorter, more intensive
rotations, greater water demand and reduced opportunity for nutrient recycling. Over the course
of two or three production rotations, site productivity would begin to decline, requiring
increased fertiliser inputs or - more likely in tropical countries - leading to land abandonment.
However, as this form of plantation forestry would be highly profitable, a pattern of migratory
plantation establishment (a type of land use already seen with mangrove clearance for shrimp
production) could develop. The land base that would be required to support plantation activities
would therefore expand much more rapidly than previously anticipated, and the risk of loss and
degradation of natural forests would increase.
The first generation of GM trees will include pest resistance and herbicide tolerance. Many tree
species including poplar, walnut and spruce have been engineered to contain the insecticide Bt
toxin (derived from the bacterium Bacillus thuringiensis). This is a wide-spectrum pesticide and
can impact upon populations of both target and non-target organisms. Furthermore, the reduced
application of herbicides promised by advocates of this technology has not been realised. The
US Department of Agriculture has recently revealed that many farmers who have converted to
GM production are using just as much herbicide as their counterparts who continued to produce
conventional crops (See The Times, London, 8 July 1999).

4 Regulating genetically modified trees

National regulatory frameworks governing the release of GM trees are either non-existent or
totally inadequate. Nowhere has proper consideration been given to the biosafety issues that are
peculiar to tree crops. One area of particular concern is that existing regulations for transgenic
species are designed to control the wild release of annual and short-lived perennial agricultural
crops. Meanwhile negotiations to provide an international framework on biosafety through the
Convention on Biological Diversity (CBD) have virtually ground to a halt. Worryingly, there is
a risk that countries supporting the rapid commercialisation of biotechnology will seek to make
the World Trade Organisation the foremost authority on the environmental safety of GMOs.
Public concern over GMOs is ignored, and governments and industry continue to exclude civil
society from their negotiations.

5 Recommendations

It is far too early to judge whether biotechnology can make a safe and effective contribution to
the forest sector. Governments should therefore declare a moratorium on the commercial release
of genetically modified tree species until properly agreed national and international safeguards
have been put in place and the risks concerning the behaviour of novel traits and modified tree
species have been fully quantified over time.
Governments and industry must pursue a more open and honest policy on biotechnology within
the forest sector. Transparency and inclusiveness should be key features of both regulation
setting and supervision, and this can only be achieved through involving civil society in a public
At the international level, governments should undertake to break the deadlock on the Biosafety
Protocol within the CBD. They should accept the CBD as the foremost international agreement
on GMOs, and until more reliable information is available, international regulation must be of a
precautionary nature.
1 With a few exceptions, there is a lack of knowledge concerning the genetics, physiology and
ecology of most tree species. In such cases, modification of a tree species’ genome must be
complemented by auxiliary research that addresses the basic biological gaps in our
knowledge concerning that species.
2 Continuing field trials must be re-designed to examine not only the behaviour of the
introduced trait but also the broader environmental impact of the modified tree species.
3 Research must be continued over a sufficient period of time to enable researchers to
quantify risk throughout a standard rotation period.

WWF Conserves wildlife and the
natural environment for present
and future generations.
All rights reserved. All material
appearing in this publication is subject
to copyright and may be reproduced
with permission. Any reproduction in
full or in part of this publication must
credit WWF-UK as the copyright
The views of the author expressed in
this publication do not necessarily
reflect those of WWF.
The author has used all reasonable
endeavours to ensure that the content
of this report, the data compiled, and
the methods of calculation and
research are consistent with normally
accepted standards and practices but
no warranty is given to that effect nor
any liability accepted by the authors
for any loss or damage arising from
the use of this report by WWF-UK or
by any other party.
The material and the geographical
designations in this report do not
imply the expression of any opinion
whatsoever on the part of WWF
concerning the legal status of any
country, territory, or area, or
concerning the delimitation of its
frontiers or boundaries.
ã WWF-UK, 1999
Registered Charity No 201707
For further information or a copy
of the the scoping study GM
technology in the forest sector,
Francis Sullivan
Director of Programmes
Panda House, Weyside Park
Godalming, Surrey GU7 1XR
Telephone: + 44 (0)1483 426444
Fax: +44 (0)1483 426409
Jean-Paul Jeanrenaud
Head of Forest Programme
WWF International
Avenue du Mont-Blanc
CH-1196 Gland, Switzerland
Telephone: + 41 22 364 91 11
Fax: + 41 22 364 53 58