Calling for a Moratorium on GM Crops and Ban on Patents

First Update of Concerns

 We the undersigned scientists call upon our Governments to:

  1. Impose an immediate moratorium on further environmental releases
    of transgenic crops, food and animal-feed products for at least 5
  2. Ban patents on living organisms, cell lines and genes.
  3. Support a comprehensive, independent public enquiry into the
    future of agriculture and food security for all, taking account of the
    full range of scientific findings as well as socioeconomic and ethical

    1. We are extremely concerned over the continued release and
    commercialization of transgenic crops, food and animal-feed
    products in the face of growing scientific evidence of hazards to
    biodiversity, food safety, human and animal health, while neither
    the need nor the benefits of genetic engineering agriculture are yet

    1.1 New scientific evidence have convinced us of the need for an
    immediate moratorium on releases.

    1.1.1. Herbicide resistant transgenes have spread to wild relatives
    by cross-pollination in both oilseed rape and sugar beet1, creating
    many species of potential superweeds. One study shows that
    transgenes may be up to 30 times more likely to escape than the
    plant's own genes2.

    1.1.2. Bt-toxins engineered into a wide range of transgenic plants
    already released into the environment may build up in the soil and
    have devastating impacts on pollinators and other beneficial

    1.1.3. Serious doubts over the safety of transgenic foods are raised
    by new revelations on the results of animal feeding experiments.
    Potatoes engineered with snowdrop lectin fed to rats caused highly
    significant reduction in weight of many organs, impairment of
    immunological responsiveness and signs suggestive of viral

    1.1.4. Research from the Netherlands show that antibiotic resistant
    marker genes from genetically engineered bacteria can be
    transferred horizontally to indigenous bacteria at a substantial
    frequency of 10-7 in an artificial gut5.

    1.1.5. Researchers in the US found widespread horizontal transfer of
    a yeast genetic parasite to the mitochondrial genome of higher
    plants6, raising serious concerns over the uncontrollable horizontal
    spread of transgenes and marker genes from transgenic plants
    released into the environment.

    2. The patenting of living organisms, cell lines and genes under the
    Trade Related Intellectual Property Rights agreement are
    sanctioning acts of piracy of intellectual and genetic resources from
    Third World nations7, and at the same time, increasing corporate
    monopoly on food production and distribution. Small farmers all over
    the world are being marginalized, threatening long term food
    security for all8.

    3. The Governments of industrialized nations, by voting for patents
    on organisms, cell lines and genes, including human genes, are in
    danger of allowing corporations unrestricted exploitation of their
    citizens and natural resources through the treaties being negotiated
    in the WTO and the MAI. Environmental standards, food safety
    standards and even basic human rights will be sacrificed to corporate
    financial imperatives9.

    4. Governmental advisory committees lack sufficient representation
    from independent scientists not linked to the industry. The result is
    that an untried, inadequately researched technology has been
    rushed prematurely to the market, while existing scientific evidence
    of hazards are being downplayed, ignored, and even suppressed10,
    and little independent research on risks are being carried out.

    5. The technology is driven by an outmoded, genetic determinist
    science that supposes organisms are determined simply by constant,
    unchanging genes that can be arbitrarily manipulated to serve our
    needs; whereas scientific findings accumulated over the past twenty
    years have invalidated every assumption of genetic determinism11.
    The new genetics is compelling us to an ecological, holistic
    perspective, especially where genes are concerned. The genes are
    not constant and unchanging, but fluid and dynamic, responding to
    the physiology of the organism and the external environment, and
    require a stable, balanced ecology to maintain stability.

    Among the signatories to the World Scientists' Statement are:

    Dr. Michael Antoniou, Molecular Geneticist, Guy's Hospital, UK

    Dr. Daniel Amman, Cell Biologist, Tech., Switzerland

    Dr. Catherine Badley, Biologist, Univ. Michigan, USA

    Dr. Susan Bardocz, Geneticist, Rowett Institute, UK

    Prof. Phil Bereano, Engineer, Council for Responsible Genetics, USA

    Dr. Javier Blasco, Aragonese Ctr. Rural Europ. Inform, Spain

    Dr. Walter Bortz, Physician, Stanford Univ., USA

    Prof. Martha Crouch, Biologist Indiana University, USA

    Prof. Joe Cummins, Geneticist, Univ. Western Ontario, Canada

    Mr. Gordon Daly, Ph.D. student, gene therapy, Kennedy Inst., UK

    Dr. Bruno Dudine, Behavioural Ecologist, Univ. Udine, Italy

    Dr. Tewolde Egziabher, Agronomist, Minstry of the Environment,

    Dr. Ty Fitzmorris, Ecologist, Hampshire College, USA

    Prof. John Garderineer, Biologist, Univ. Michigan, USA

    Mr. Edward Goldsmith, Ecologist, The Ecologist, London, UK

    Prof. Brian Goodwin, Schumacher College, UK

    Dr. John Hammond, Engineer, Highfield, UK

    Prof. Martha Herbert, Pediatric Neurologist, Mass. Gen. Hosp., USA

    Dr. Mae-Wan Ho, Geneticist and Biophysicist, Open University, UK

    Mr. Patrick Holden, Organic Agriculturist, The Soil Association, UK

    Dr. Vyvyan Howard, Toxipathologist, Liverpool Univ., UK

    Prof. Ruth Hubbard, Biologist, Harvard Univ. USA

    Prof. Tirn Ingold, Anthropologist, Univ. Manchester, UK

    Ms. Dani Kaye, Scientist for Global Responsibility, London, UK

    Dr. Philip Kilner, Cardiologist, Royal Brompton & Harefield NHS, UK

    Richard Lacey, Microbiologist, Leeds, UK

    Prof. Ervin Laszlo, Club of Budapest, Hungary

    Mr. Sean Lyman, Science Student, Gettysbury College, USA

    Dr. Timothy Mann, Geographer, Hampshire College, USA

    Dr. Katarina Leppanen, Univ. Sweden, Gothenburg, Sweden

    Vuejuin Mckersen, Natural Resource Manager, Univ. Michigan, USA

    Prof. David Packham, Material Scientist, Univ. Bath, UK

    Chris Picone, Soil Microbiologist, Univ. Michigan, USA

    Dr. Robert Poller, Organic Chemist, Univ. London, UK

    Dr. Arpad Pusztai, Biochemical Immunologist, Rowett Institute, UK

    Dr. Carlos R. Ramirez, Biologist, St. Lawrence Univ., USA

    Dr. Peter M. Rosset, Inst. Food & Develop. Policy, USA

    Ms. Angela Ryan, Molecular Biologist, Institute of Science in Society,

    Prof. Peter Saunders, Biomathematician, King's College, London, UK

    Dr. Nancy A. Schultz, Entomologist, Univ. Wisconsin-Madison, USA

    Dr. Brian Schultz, Ecologist, Hampshire College, USA

    Ms. Verena Soldati, Biotechnologist, Basle Appell, Switzerland

    Dr. John Soluri, Historian of Science, Carnegie Mellon Univ. USA

    Dr. Vandana Shiva, Res. Fdn. for Science and Ecology, New Delhi,

    Prof. Atuhiro Sibatani, Molecular Biologist, Osaka, Japan

    Dr. Gerald Smith, Zoologist, Univ. Michigan, USA

    Dr. Ted Steele, Molecular Immunologist, Univ. Wollongong, Australia

    Prof. Ian Stewart, Biomathematician, Warwick University, UK

    Prof. David Suzuki, Geneticist, Sust. Develop. Res. Ins. U.B.C.,

    Prof. Terje Traavik, Institute of Medical Microbiology, Tromso,

    Ms Rosa Vazquez, Biology Student, Ohio State Univ. USA


1Brookes, M. (1998). Running wild, New Scientist 31 October; Snow, A. and Jorgensen, R. (1998). Costs of transgenic
glufosinate resistance introgressed from Brassica napus into weedly Brassica rapa. Abstract, Ecological Society of
America, Baltimore, Aug. 6, 1998
2Bergelson, J., Purrington,c.B. and Wichmann, G. (1998). Promiscuity in transgenic plants. Nature 395, 25.
3Crecchio, C. and Stotzky, G. (1998). Insecticidal activity and biodegradation of the toxin from
Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil," Soil Biology and Biochemistry 30, 463-70, and
references therein.
4Leake, C. and Fraser, L. (1999). Scientst in Frankenstein food alert is proved right. UK Mail on Sunday, 31 Jan. ;
Goodwin, B.C. (1999). Report on SOAEFD Flexible Fund Project RO818, Jan. 23, 1999.
5MacKenzie, D. (1999). Gut reaction. New Scientist 30 Jan., p.4.
6Cho, Y., Qiu, Y.-L., Kuhlman, P. and Palmer, J.D. (1998). Explosive invasion of plant mitochondria by a group I intron.
Proc. Natl. Acad. Sci. USA 95, 14244-9.
7See Shiva, V. (1998). Biopiracy The Plunder of Nature and Knowledge, Green Books, London; also Latin American
Declaration on Transgenic Organisms, Quito, 22 Jan. 1999.
8The Corner House (1998), Food? Health? Hope? Genetic Engineering and World Hunger, Briefing 10.
9See Mander, J. and Goldsmith, E. eds. (1996). The Case against the Global Economy and for a Turn toward the Local,
Sierra Club Books, San Francisco.
10 See note 4.
11See Ho, M.W. (1998, 1999). Genetic Engineering Dream or Nightmare? The Brave New World of Bad Science and
Big Business, Gateways Books and Third World Network, Bath and Penang.

First Update of Concerns  - July 15, 1999

Prepared by
Dr Mae-Wan Ho & Angela Ryan
Open University, UK


The article on TRIPS is now under review at the WTO. It is an opportunity to
exclude the new biotech patents from TRIPS. A scientific briefing was
produced for the Third World Network and circulated at WTO, by two of our
signatories, Dr. Mae-Wan Ho and Dr. Terje Traavik. The full document can be
found on our website: <>. It provides a
glossary and detailed analysis of the relevant article in TRIPS as well as
corresponding articles in the EU Directive.  The briefing conludes :

All classes of the new biotech patents should be rejected from inclusion in
TRIPS on the following grounds:

All involve biological processes not under the direct control of the
scientist.  They cannot be regarded as inventions but expropriations from

The hit or mis technologies associated with many of the inventions are
inherently hasardous to health and biodiversity.

There is no scientific basis to support the patenting of genes and genomes,
which are discoveries at best.

Many patents are unethical ; they destroy livelihoods, contravene basic
human rights, create unnecessary suffering in animals or are otherwise
contrary to public order and morality.

Many patents involve acts of plagiarism of indigenous knowledge and
biopiracy of plants (and animals) bred and used by local communities for


1.  Researchers at Cornell University published a study in Nature which
found that pollen from GM Bt corn could have lethal effects on the larvae of
monarch butterflies if it lands on milkweed, the plant upon which they feed.
Forty-four percent of the larvae were killed after 4 days, whereas no
mortality occurred in larvae fed nontransgenic pollen. The Cornell
University researchers say their results "have potentially Ýprofound
implications for the conservation of monarch butterflies" and believe more
research on the environmental risks of biotechnology in agriculture is

Reference: Losey, J.E. et al (1999). Transgenic pollen harms monarch larvae.
Nature 399, 214.

2.  A recent study on transgenic rice carried out at the John Innes
Institute supports previous evidence that there is a recombination hotspot
in the CaMV 35S promoter. Furthermore, most of the recombination events
analyzed were 'illegitimate' or nonhomologous and do not require substantial
similarity in nucleic acid base sequence. The recombination events were also
found to occur independently, in the absence of other viral genes.

Our comment: Transgenic lines containing the CaMV promoter, which includes
practically all that have been released, are therefore prone to instability
due to rearrangements, and also have the potential to create new viruses or
other invasive genetic elements.  The continued release of such transgenic
lines is unwarranted in light of the new findings.

Reference; Kohli, A. et al 1999. Molecular characterization of transforming
plasmid rearrangement in transgenic rice reveals a recombination hotspot in
the CaMV promoter and confirms the predominance of microhomology mediated
recombination. The Plant Journal 17(6), pp 591-601.

3.  A new study reviews 8,200 university based trials of transgenic soya
varieties. It reveals that Roundup Ready Soybeans produce lower yields
compared to their non GM counterparts.  The average yield drag in RR
soybeans was 6.7% and in some areas of the midwest the average yeild in
conventional varieties was 10% higher compared to Roundup Ready varieties.
Furthermore the analysis shows that farmers use 2 to 5 times more herbicide
measured in pounds applied per acre on RR soybeans compared with other weed
management systems.  RR herbicide use exceeds the levels on many farms using
multi-tactic weed management systems by a factor of 10 or more.

Reference: Evidence of the Magnitude and Consequences of the Roundup Ready
Soybean Yield Drag from University-Based Varietal Trials in 1998 by U.S.
agronomist Dr. Charles Benbrook, author of Pest Management at the Crossroads
and former Executive Director of the Board on Agriculture for the US
National Academy of Sciences. ÝAg Biotech Infonet Technical Paper Number 1
July 13 1999. website <>

3.  A recent population-based study conducted in Sweden between 1987-1990
and including follow-up interviews clearly links exposure to Roundup Ready
herbicide (glyphosate) to non-Hodgkinís lymphoma and strongly suggests
glyphosate deserves further epidemiological studies.

Reference: Hardell, H. & Eriksson, M. (1999).   A Case-Control Study of
Non-Hodgkin Lymphoma and Exposure to Pesticides. Cancer 5, No 6.

4.  A new paper reports chaotic gene silencing in GM plants and reveals that
each transformed plant expressed a different and specific instability
profile.  Both transcriptional and post-transcriptional gene silencing
mechanisms were operating in a chaotic manner and demonstrates that
epigenetic (position) effects are responsible for transgene instability in
GM plants.  These results indicate that transgene silencing and instability
will continue to hinder the economic exploitation of GM plants.

Reference; Dr Neve M et al. (1999)  Gene Silencing results in instability of
antibody production in transgenic plants.  Molecular and General Genetics

5.  Successful transfers of a kanamycin resistance marker gene to the soil
bacterium Acinetobacter were obtained using DNA extracted from homogenized
plant leaf from a range of transgenic plants: Solanum tuberosum (potato),
Nicotiana tabacum (tobacco), Beta vulgaris (sugar beet), Brassica napus
(oil-seed rape) and Lycopersicon esculentum (tomato). It is estimated that
about 2500 copies of the kanamycin resistance genes (from the same number of
plant cells) is sufficient to successfully transform one bacterium, despite
the fact that there is six million-fold excess of plant DNA present.

Our comment: A single plant with say, 2.5 trillion cells, would be
sufficient to transform one billion bacteria.

Reference: De Vries, J. and Wackernagel, W. (1998). Detection of nptII
(kanamycin resistance) genes in genomes of transgenic plants by
marker-rescue transformation. Mol. Gen. Genet. 257, 606-13.

6.  Horizontal gene transfer between bacteria can occur in the gut at high
frequencies. This has been demonstrated in the gut of germ-free mice. The
Œgerm-free¹ gut-environment can result from taking antibiotics. In one
experiment, tetracycline increases the frequency of horizontal gene transfer
by 20-fold. And vancomycin-resistant Enterococcus faecium is found to
colonise the gut when the mice were treated with antibiotic.

Our comments: Antibiotic resistance marker genes can spread from GMOs to
bacteria and between bacteria, including those associated with infectious
diseases. Furthermore, the use of antibiotics will make resistance spread
more readily.

References: Persson et al (1996). Enetrococcus faecium in ex-germfree mice.
Microecology and Therapy, 24, 169-173.
Doucet-Populaire, F. et al (1991). Inducible transfer of conjugative
transposon Tn/545 from Enterocococcus faecalis to Listeria monocytogenes in
the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother., 35,
Whitman, M.S. et al (1996). Gastrointestional tract colonization with
vancomycin-resistant Enterococcus faecium in an animal model. Antimicrob.
Agents Chemother. 40, 1526-30.

7.  Pathogenic bacteria capable of invading cells can act as vectors for
transferring genes into mammalian cells.

Our comment: Dangerous transgenic DNA can end up in the genome of our cells,
with the potential of causing a lot of genetic disturbance including cancer.

Reference: Grillot-Courvalin, et al. (1998). Functional gene transfer from
intracellular bacteria to mammalian cells. Nature Biotechnology 16, 1-5.