Time Inconsistency of Government Policies

Michael Bar1

May 11, 2020

1San Francisco State University
Definition

Time Inconsistency. The problem that arises when a policy maker prefers one policy in advance but a different one when the time to implement arrives. Knowing this, others will not find the commitment to the first policy credible.

- In simple words: tendency to promise one thing and deliver another.
- Time Inconsistency problem arises despite policy makers having good intentions.
Definition

Time Inconsistency. The problem that arises when a policy maker prefers one policy in advance but a different one when the time to implement arrives. Knowing this, others will not find the commitment to the first policy credible.

- In simple words: tendency to promise one thing and deliver another.
- Time Inconsistency problem arises despite policy makers having good intentions.
Teacher Exams Policy

- Policy announcement at time \(t - 1 \): "there will be exam at \(t \)."
- If students studied, optimal policy at time \(t \): cancel the exam.
 - The goal to make students study is achieved, and the teacher doesn’t like grading.
- In anticipation that exam will be canceled, students don’t study - failure to achieve Pareto Optimal outcome:
 \[\{ \text{students study, teacher doesn’t grade} \} \]
- Q. How to achieve socially optimal outcome?
Teacher Exams Policy

- Policy announcement at time $t-1$: "there will be exam at t."
- **If students studied**, optimal policy at time t: cancel the exam.
 - The goal to make students study is achieved, and the teacher doesn’t like grading.
- In anticipation that exam will be canceled, students don’t study - failure to achieve Pareto Optimal outcome:
 \[
 \{\text{students study, teacher doesn’t grade}\}
 \]
- Q. How to achieve socially optimal outcome?
Teacher Exams Policy

- Policy announcement at time $t - 1$: "there will be exam at $t".
- **If students studied**, optimal policy at time t: cancel the exam.
 - The goal to make students study is achieved, and the teacher doesn’t like grading.
- In anticipation that exam will be canceled, students don’t study - failure to achieve Pareto Optimal outcome:
 \[
 \{ \text{students study, teacher doesn’t grade} \}
 \]
- Q. How to achieve socially optimal outcome?
Teacher Exams Policy

- Policy announcement at time $t - 1$: "there will be exam at t.
- **If students studied**, optimal policy at time t: cancel the exam.
 - The goal to make students study is achieved, and the teacher doesn’t like grading.
- In anticipation that exam will be canceled, students don’t study - failure to achieve Pareto Optimal outcome:
 \[
 \{\text{students study, teacher doesn’t grade}\}
 \]

- Q. How to achieve socially optimal outcome?
Teacher Exams Policy

- Policy announcement at time $t - 1$: "there will be exam at t.''
- **If students studied**, optimal policy at time t: cancel the exam.
 - The goal to make students study is achieved, and the teacher doesn’t like grading.

- In anticipation that exam will be canceled, students don’t study - failure to achieve Pareto Optimal outcome:
 $$\{\text{students study, teacher doesn’t grade}\}$$

- Q. How to achieve socially optimal outcome?

"for their contributions to dynamic macroeconomics: the time consistency of economic policy and the driving forces behind business cycles."

Q. What would Kydland and Prescott recommend for the Teacher Exams Policy?

Set rules: the teacher commits to having exams on certain dates and puts it in writing - syllabus. This will not achieve the Pareto Optimal outcome (teacher needs to grade), but is a second best.

Q. What would Kydland and Prescott recommend for the Teacher Exams Policy?

Set rules: the teacher commits to having exams on certain dates and puts it in writing - syllabus. This will not achieve the Pareto Optimal outcome (teacher needs to grade), but is a second best.
Kydland and Prescott

- Q. What would Kydland and Prescott recommend for the Teacher Exams Policy?
 - Set rules: the teacher commits to having exams on certain dates and puts it in writing - syllabus. This will not achieve the Pareto Optimal outcome (teacher needs to grade), but is a second best.
Example: fiscal policy

- At $t - 1$ government promises low taxes on capital: low τ_{kt}.
- Investors invest a lot (high x_{t-1}): $k_t = (1 - \delta)k_{t-1} + x_{t-1}$.
- At t, optimal policy for government is to tax k_t at high rate ($\tau_{kt} = 100\%$), since k_t is already determined.
- Problem: if investors at time $t - 1$ understand that it is optimal for gov. to set $\tau_{kt} = 100\%$, they will choose $x_{t-1} = 0$.
Example: fiscal policy

- At $t - 1$ government promises low taxes on capital: low τ_{kt}.
- Investors invest a lot (high x_{t-1}): $k_t = (1 - \delta)k_{t-1} + x_{t-1}$.
- At t, optimal policy for government is to tax k_t at high rate ($\tau_{kt} = 100\%$), since k_t is already determined.
- Problem: if investors at time $t - 1$ understand that it is optimal for gov. to set $\tau_{kt} = 100\%$, they will choose $x_{t-1} = 0$.
Example: fiscal policy

- At \(t - 1 \) government promises low taxes on capital: low \(\tau_{kt} \).
- Investors invest a lot (high \(x_{t-1} \)): \(k_t = (1 - \delta)k_{t-1} + x_{t-1} \).
- At \(t \), optimal policy for government is to tax \(k_t \) at high rate \((\tau_{kt} = 100\%)\), since \(k_t \) is already determined.
- Problem: if investors at time \(t - 1 \) understand that it is optimal for gov. to set \(\tau_{kt} = 100\% \), they will choose \(x_{t-1} = 0 \).
Example: fiscal policy

- At $t - 1$ government promises low taxes on capital: low τ_{kt}.
- Investors invest a lot (high x_{t-1}): $k_t = (1 - \delta)k_{t-1} + x_{t-1}$.
- At t, optimal policy for government is to tax k_t at high rate ($\tau_{kt} = 100\%$), since k_t is already determined.
- Problem: if investors at time $t - 1$ understand that it is optimal for gov. to set $\tau_{kt} = 100\%$, they will choose $x_{t-1} = 0$.
Example: fiscal policy

<table>
<thead>
<tr>
<th>Policy at $t - 1$</th>
<th>No commitment</th>
<th>Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{kt} = 30%$</td>
<td>$\tau_{kt} = 30%$</td>
<td></td>
</tr>
<tr>
<td>Policy at t</td>
<td>Opt. policy: $\tau_{kt} = 100%$</td>
<td>Rule: $\tau_{kt} = 30%$</td>
</tr>
<tr>
<td>Outcome</td>
<td>Bad, $x_{t-1} = 0$</td>
<td>Good, $x_{t-1} > 0$</td>
</tr>
</tbody>
</table>
Example: Monetary policy

- **Private sector:**
 \[\pi^e_t = E (\pi_t | \Omega_{t-1}) \]

- **Government:**
 \[
 \max_{u_t, \pi_t} S_t = -\frac{1}{2} (u_t - \theta u^*)^2 - \frac{1}{2} \gamma \pi_t^2
 \]
 \[\text{s.t.}\]
 \[u_t = u^* - \alpha (\pi_t - \pi^e_t)\]
 \[\alpha, \gamma > 0, \theta \in (0, 1)\]

- **Solution:**
 \[\pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi^e_t}{\gamma + \alpha^2} > 0\]
Example: Monetary policy

- **Private sector:**
 \[\pi^e_t = E \left(\pi_t \mid \Omega_{t-1} \right) \]

- **Government:**
 \[
 \max_{u_t, \pi_t} S_t = \frac{1}{2} (u_t - \theta u^*)^2 - \frac{1}{2} \gamma \pi^2_t \\
 \text{s.t.} \\
 u_t = u^* - \alpha (\pi_t - \pi^e_t) \\
 \alpha, \gamma > 0, \theta \in (0, 1)
 \]

- **Solution:**
 \[
 \pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi^e_t}{\gamma + \alpha^2} > 0
 \]
Example: Monetary policy

- Private sector:
 \[\pi_t^e = E (\pi_t | \Omega_{t-1}) \]

- Government:
 \[
 \max_{\pi_t, u_t} S_t = -\frac{1}{2} (u_t - \theta u^*)^2 - \frac{1}{2} \gamma \pi_t^2 \\
 \text{s.t.} \\
 u_t = u^* - \alpha (\pi_t - \pi_t^e) \\
 \alpha, \gamma > 0, \theta \in (0, 1)
 \]

- Solution:
 \[
 \pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi_t^e}{\gamma + \alpha^2} > 0
 \]
Example: Monetary policy

- Optimal policy at time t:

 $$\pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi^e_t}{\gamma + \alpha^2} > 0$$

- $\pi^e_t = 0$ is not rational.

- Rational expectation equilibrium requires: $\pi^e_t = \pi_t$, which implies

 $$\pi_t = \frac{\alpha (1 - \theta) u^*}{\gamma} > 0$$
 $$u_t = u^*$$
Example: Monetary policy

- **Optimal policy at time** t:

\[
\pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi_t^e}{\gamma + \alpha^2} > 0
\]

- $\pi_t^e = 0$ is not rational.

- Rational expectation equilibrium requires: $\pi_t^e = \pi_t$, which implies

\[
\pi_t = \frac{\alpha (1 - \theta) u^*}{\gamma} > 0
\]

\[
u_t = u^*
\]
Example: Monetary policy

- Optimal policy at time \(t \):

\[
\pi_t = \frac{\alpha (1 - \theta) u^* + \alpha^2 \pi^e_t}{\gamma + \alpha^2} > 0
\]

- \(\pi^e_t = 0 \) is not rational.

- Rational expectation equilibrium requires: \(\pi^e_t = \pi_t \), which implies

\[
\pi_t = \frac{\alpha (1 - \theta) u^*}{\gamma} > 0
\]

\[
u_t = u^*
\]
Example: Monetary policy

<table>
<thead>
<tr>
<th>No commitment</th>
<th>Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy at $t-1$</td>
<td>$\pi_t = 0$</td>
</tr>
<tr>
<td>Policy at t</td>
<td>$\pi_t > 0$</td>
</tr>
<tr>
<td>Outcome</td>
<td>$u_t = u^*, \pi_t > 0$</td>
</tr>
</tbody>
</table>
Kydland and Prescott Legacy

- Revolutionized modern central banking. Modern monetary policy discussion shifted from "what interest rate to set?" to "how to establish credibility and trust?", and "how to design the central banking system?''.
 - Read Interview with Bernanke, to see the discussion on credibility and time inconsistency.

- Reforms in New Zealand, Sweden, Great Britain, and in the Euro area, passing legislation aimed at increasing independence of central bankers.

- Nations and states are moving towards Balanced Budget Rules, which prohibit running deficits, except in special cases.

- Methodological contribution - apply dynamic game theory framework to studying government policies.
Kydland and Prescott Legacy

- Revolutionized modern central banking. Modern monetary policy discussion shifted from "what interest rate to set?" to "how to establish credibility and trust?", and "how to design the central banking system?".
 - Read Interview with Bernanke, to see the discussion on credibility and time inconsistency.

- Reforms in New Zealand, Sweden, Great Britain, and in the Euro area, passing legislation aimed at increasing independence of central bankers.

- Nations and states are moving towards Balanced Budget Rules, which prohibit running deficits, except in special cases.

- Methodological contribution - apply dynamic game theory framework to studying government policies.
Kydland and Prescott Legacy

- Revolutionized modern central banking. Modern monetary policy discussion shifted from "what interest rate to set?" to "how to establish credibility and trust?", and "how to design the central banking system?".
 - Read Interview with Bernanke, to see the discussion on credibility and time inconsistency.

- Reforms in New Zealand, Sweden, Great Britain, and in the Euro area, passing legislation aimed at increasing independence of central bankers.

- Nations and states are moving towards Balanced Budget Rules, which prohibit running deficits, except in special cases.

- Methodological contribution - apply dynamic game theory framework to studying government policies.
Kydland and Prescott Legacy

- Revolutionized modern central banking. Modern monetary policy discussion shifted from "what interest rate to set?" to "how to establish credibility and trust?", and "how to design the central banking system?".
 - Read Interview with Bernanke, to see the discussion on credibility and time inconsistency.
- Reforms in New Zealand, Sweden, Great Britain, and in the Euro area, passing legislation aimed at increasing independence of central bankers.
- Nations and states are moving towards Balanced Budget Rules, which prohibit running deficits, except in special cases.
- Methodological contribution - apply dynamic game theory framework to studying government policies.
Kydland and Prescott Legacy

- Revolutionized modern central banking. Modern monetary policy discussion shifted from "what interest rate to set?" to "how to establish credibility and trust?", and "how to design the central banking system?".
 - Read Interview with Bernanke, to see the discussion on credibility and time inconsistency.
- Reforms in New Zealand, Sweden, Great Britain, and in the Euro area, passing legislation aimed at increasing independence of central bankers.
- Nations and states are moving towards Balanced Budget Rules, which prohibit running deficits, except in special cases.
- Methodological contribution - apply dynamic game theory framework to studying government policies.