Business Cycles part 1

Michael Bar

April 6, 2020

1San Francisco State University
Business Cycles: Introduction
Main message from Solow and NGM: without growth in productivity, it is impossible to achieve sustained growth in standard of living.

Conclusion: need theory of productivity, in order to better understand growth.

Q. What if business cycles are also driven by productivity?
Introduction

- Main message from Solow and NGM: without growth in productivity, it is impossible to achieve sustained growth in standard of living.
- Conclusion: need theory of productivity, in order to better understand growth.
- Q. What if business cycles are also driven by productivity?
Main message from Solow and NGM: without growth in productivity, it is impossible to achieve sustained growth in standard of living.

Conclusion: need theory of productivity, in order to better understand growth.

Q. What if business cycles are also driven by productivity?
Finn E. Kydland & Edward C. Prescott: Nobel Memorial Prize in Economics in 2004

"for their contributions to dynamic macroeconomics: the time consistency of economic policy and the driving forces behind business cycles."
Introduction

Real gross domestic product per capita

- Pre recession growth trend: 2.1% annual
- Business cycles
- Post recession growth: 1.58%
- Growth since 2017: 1.8%

Source: US. Bureau of Economic Analysis/FRED
Economic growth and business cycles are separate phenomena, but they both driven by productivity:

- Economic growth is driven by growth in productivity - \(A_t = A_0 (1 + \gamma_A)^t \).
- Business cycles are driven by stochastic shocks to productivity (RBC - Real Business Cycle theory).

\[
A_t = A_0 (1 + \gamma_A)^t \times e^{zt}
\]

where \(z_t = \rho z_{t-1} + \varepsilon_t \) and \(\varepsilon_t \sim i.i.d. N \left(0, \sigma^2 \varepsilon \right) \)

Q. Why did we choose this particular stochastic process for productivity shocks?
A. Goal: replicating observed business cycles in the data.
Economic growth and business cycles are separate phenomena, but they both driven by productivity:

- Economic growth is driven by growth in productivity -
 \[A_t = A_0 (1 + \gamma_A)^t. \]
- Business cycles are driven by stochastic shocks to productivity (RBC - Real Business Cycle theory).

\[A_t = A_0 (1 + \gamma_A)^t \times e^{zt} \]

where \(z_t = \rho z_{t-1} + \varepsilon_t \) and \(\varepsilon_t \sim i.i.d. \ N \left(0, \sigma^2_\varepsilon \right) \)

Q. Why did we choose this particular stochastic process for productivity shocks?

A. Goal: replicating observed business cycles in the data.
Economic growth and business cycles are separate phenomena, but they both driven by productivity:

- Economic growth is driven by growth in productivity - $A_t = A_0 (1 + \gamma_A)^t$.
- Business cycles are driven by stochastic shocks to productivity (RBC - Real Business Cycle theory).

$$A_t = A_0 (1 + \gamma_A)^t \times e^{z_t}$$

where $z_t = \rho z_{t-1} + \varepsilon_t$ and $\varepsilon_t \sim i.i.d. N(0, \sigma_\varepsilon^2)$

Q. Why did we choose this particular stochastic process for productivity shocks?
A. Goal: replicating observed business cycles in the data.
Kydland and Prescott’s Theory

- Economic growth and business cycles are separate phenomena, but they both driven by productivity:
 - Economic growth is driven by growth in productivity: \(A_t = A_0 (1 + \gamma_A)^t \).
 - Business cycles are driven by stochastic shocks to productivity (RBC - Real Business Cycle theory).

\[
A_t = A_0 (1 + \gamma_A)^t \times e^{zt}
\]

where \(z_t = \rho z_{t-1} + \varepsilon_t \) and \(\varepsilon_t \sim i.i.d. N \left(0, \sigma_\varepsilon^2 \right) \)

- Q. Why did we choose this particular stochastic process for productivity shocks?
 - A. Goal: replicating observed business cycles in the data.
Economic growth and business cycles are separate phenomena, but they both driven by productivity:

- Economic growth is driven by growth in productivity -
 \[A_t = A_0 (1 + \gamma_A)^t. \]
- Business cycles are driven by stochastic shocks to productivity (RBC - Real Business Cycle theory).

\[
A_t = A_0 (1 + \gamma_A)^t \times e^{zt}
\]

where \(z_t = \rho z_{t-1} + \varepsilon_t \) and \(\varepsilon_t \sim i.i.d. N(0, \sigma^2_\varepsilon) \)

Q. Why did we choose this particular stochastic process for productivity shocks?

A. Goal: replicating observed business cycles in the data.
Stochastic NGM
Social Planner’s Problem:

\[
\begin{aligned}
\max_{\{c_t, h_t, k_{t+1}\}_{t=0}^{\infty}} & \quad E_0 \sum_{t=0}^{\infty} \beta^t u (c_t, 1 - h_t) \\
\text{s.t.} & \\
[\text{Feasibility}] & \quad c_t + k_{t+1} = A_t k_t^\theta h_t^{1-\theta} + (1 - \delta) k_t \quad \forall t \\
[\text{Productivity}] & \quad A_t = A_0 (1 + \gamma_A)^t e^{z_t}, \quad z_t = \rho z_{t-1} + \varepsilon_t \\
& \quad \text{and } \varepsilon_t \sim i.i.d. \ N (0, \sigma^2_\varepsilon) \\
& \quad k_0 > 0 \text{ given}
\end{aligned}
\]
Stochastic NGM

- E_0 is shorthand for Conditional Expectation. In general

$$E_t(X) = E(X_t|\Omega_t)$$

where Ω_t is the information available at time t. Here the information known at time t is

$$\Omega_t = (A_t, k_t)$$

- Remind yourself what is conditional expectation by example. Let X be a toss of a die.
 - $E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5$
 - $E(X|X \text{ is even}) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 6 = 4$
 - $E(X|X \text{ is odd}) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = 3$
Stochastic NGM

- E_0 is shorthand for Conditional Expectation. In general

$$E_t(X) = E(X_t|\Omega_t)$$

where Ω_t is the information available at time t. Here the information known at time t is

$$\Omega_t = (A_t, k_t)$$

- Remind yourself what is conditional expectation by example. Let X be a toss of a die.

 - $E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5$
 - $E(X|X \text{ is even}) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 6 = 4$
 - $E(X|X \text{ is odd}) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = 3$
Stochastic NGM

- E_0 is shorthand for **Conditional Expectation**. In general

$$E_t (X) = E (X_t | \Omega_t)$$

where Ω_t is the information available at time t. Here the information known at time t is

$$\Omega_t = (A_t, k_t)$$

- Remind yourself what is conditional expectation by example. Let X be a toss of a die.
 - $E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5$
 - $E(X|X \text{ is even}) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 6 = 4$
 - $E(X|X \text{ is odd}) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = 3$
Stochastic NGM

- E_0 is shorthand for Conditional Expectation. In general

$$E_t(X) = E(X_t | \Omega_t)$$

where Ω_t is the information available at time t. Here the information known at time t is

$$\Omega_t = (A_t, k_t)$$

- Remind yourself what is conditional expectation by example. Let X be a toss of a die.
 - $E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5$
 - $E(X|X \text{ is even}) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 6 = 4$
 - $E(X|X \text{ is odd}) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = 3$
Stochastic NGM

- E_0 is shorthand for **Conditional Expectation**. In general

$$E_t (X) = E (X_t | \Omega_t)$$

where Ω_t is the information available at time t. Here the information known at time t is

$$\Omega_t = (A_t, k_t)$$

- Remind yourself what is conditional expectation by example. Let X be a toss of a die.

 - $E(X) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + ... + \frac{1}{6} \cdot 6 = 3.5$
 - $E (X|X \text{ is even}) = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 6 = 4$
 - $E (X|X \text{ is odd}) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 5 = 3$
Stochastic NGM

- e^{zt} is the stochastic portion of productivity
 $A_t = A_0 \left(1 + \gamma_A \right)^t e^{zt}$

- $zt = \rho z_{t-1} + \varepsilon_t$, with $\varepsilon_t \sim i.i.d. \ N(0, \sigma_\varepsilon^2)$

 is called Autoregressive stochastic process of order 1 (short: AR(1)).

- The parameter ρ is is the autoregressive coefficient. We assume $|\rho| < 1$.

- ε_t is called white noise process (aka *innovation* process).

- *i.i.d.* stands for independent and identically distributed random variables. Thus, all ε_t have the same mean 0 and same variance σ_ε^2, and ε_t and ε_{t+k} are independent for all $k = \pm 1, 2, ...
Stochastic NGM

- e^{zt} is the stochastic portion of productivity
 $A_t = A_0 \left(1 + \gamma_A\right)^t \ e^{zt}$

- $z_t = \rho z_{t-1} + \varepsilon_t$, with $\varepsilon_t \sim i.i.d. \ N(0, \sigma^2_{\varepsilon})$

is called Autoregressive stochastic process of order 1 (short: AR(1)).

- The parameter ρ is is the autoregressive coefficient. We assume $|\rho| < 1$.

- ε_t is called white noise process (aka innovation process).

- $i.i.d.$ stands for independent and identically distributed random variables. Thus, all ε_t have the same mean 0 and same variance σ^2_{ε}, and ε_t and ε_{t+k} are independent for all $k = \pm 1, 2, ...$
Stochastic NGM

- e^{zt} is the stochastic portion of productivity
 \[A_t = A_0 \left(1 + \gamma_A\right)^t e^{zt} \]

- \[z_t = \rho z_{t-1} + \varepsilon_t, \text{ with } \varepsilon_t \sim i.i.d. \mathcal{N}(0, \sigma^2_{\varepsilon}) \]

 is called Autoregressive stochastic process of order 1 (short: AR(1)).

- The parameter ρ is the autoregressive coefficient. We assume $|\rho| < 1$.

- ε_t is called white noise process (aka innovation process).

- $i.i.d.$ stands for independent and identically distributed random variables. Thus, all ε_t have the same mean 0 and same variance σ^2_{ε}, and ε_t and ε_{t+k} are independent for all $k = \pm 1, 2, \ldots$
Stochastic NGM

- e^{zt} is the stochastic portion of productivity
 \[A_t = A_0 \left(1 + \gamma_A \right)^t e^{zt} \]

- \[
 z_t = \rho z_{t-1} + \varepsilon_t, \quad \text{with} \quad \varepsilon_t \sim i.i.d. \ N\left(0, \sigma_\varepsilon^2\right)
 \]

 is called Autoregressive stochastic process of order 1 (short: AR(1)).

- The parameter ρ is the autoregressive coefficient. We assume $|\rho| < 1$.

- ε_t is called white noise process (aka innovation process).

- $i.i.d.$ stands for independent and identically distributed random variables. Thus, all ε_t have the same mean 0 and same variance σ_ε^2, and ε_t and ε_{t+k} are independent for all $k = \pm 1, 2, \ldots$
Stochastic NGM

- e^{z_t} is the stochastic portion of productivity
 \[A_t = A_0 \left(1 + \gamma_A \right)^t e^{z_t} \]

\[z_t = \rho z_{t-1} + \varepsilon_t, \text{ with } \varepsilon_t \sim i.i.d. \ N \left(0, \sigma^2_\varepsilon \right) \]

is called Autoregressive stochastic process of order 1 (short: AR(1)).

- The parameter ρ is the autoregressive coefficient. We assume $|\rho| < 1$.
- ε_t is called white noise process (aka innovation process).
- $i.i.d.$ stands for independent and identically distributed random variables. Thus, all ε_t have the same mean 0 and same variance σ^2_ε, and ε_t and ε_{t+k} are independent for all $k = \pm 1, 2, \ldots$
Stochastic NGM: Recap

Social Planner’s Problem:

$$\max \{c_t, h_t, k_{t+1}\}_{t=0}^\infty E_0 \sum_{t=0}^\infty \beta^t u(c_t, 1 - h_t)$$

s.t.

[Feasibility] : $$c_t + k_{t+1} = A_t k_t^\theta h_t^{1-\theta} + (1 - \delta) k_t \ \forall t$$

[Productivity] : $$A_t = A_0 (1 + \gamma_A)^t e^{zt}, \ z_t = \rho z_{t-1} + \varepsilon_t$$

: and $$\varepsilon_t \sim i.i.d. N(0, \sigma^2_{\varepsilon})$$

$$k_0 > 0 \ \text{given}$$
Stochastic NGM: Equilibrium Conditions

The necessary conditions for optimal \(\{c_t, h_t, k_{t+1}\}_{t=0}^\infty \) are:

\[
\begin{align*}
\text{[Labor]} & : \quad \frac{u_2(c_t, 1-h_t)}{u_1(c_t, 1-h_t)} = (1 - \theta) A_t k_t^\theta h_t^{-\theta} \\
\text{[EE]} & : \quad u_1(c_t, 1-h_t) \\
& = \beta E_t \left\{ u_1(c_{t+1}, 1-h_{t+1}) \left[\theta A_{t+1} k_{t+1}^{\theta-1} h_{t+1}^{1-\theta} + 1 - \delta \right] \right\} \\
\text{[Feas]} & : \quad c_t + k_{t+1} = A_t k_t^\theta h_t^{1-\theta} + (1 - \delta) k_t
\end{align*}
\]
Productivity Process
We discuss the properties of z_t in

$$A_t = A_0 \left(1 + \gamma_A\right)^t e^{z_t}$$

where

$$z_t = \rho z_{t-1} + \epsilon_t \text{ and } \epsilon_t \sim i.i.d. \ N(0, \sigma_{\epsilon}^2)$$

$$|\rho| < 1$$

The point of choosing this particular process: replicating observed business cycles in the data.
AR(1) Process

- We discuss the properties of z_t in

$$A_t = A_0 \left(1 + \gamma_A\right)^t e^{z_t}$$

where

$$z_t = \rho z_{t-1} + \epsilon_t \text{ and } \epsilon_t \sim i.i.d. \ N(0, \sigma^2_\epsilon)$$

$$|\rho| < 1$$

- The point of choosing this particular process: replicating observed business cycles in the data.
AR(p) Process

\[
\begin{align*}
[AR (1)] & : z_t = \rho z_{t-1} + \varepsilon_t \\
[AR (2)] & : z_t = \rho_1 z_{t-1} + \rho_2 z_{t-2} + \varepsilon_t \\
& \vdots \\
[AR (p)] & : z_t = \rho_1 z_{t-1} + \rho_2 z_{t-2} + \ldots + \rho_p z_{t-p} + \varepsilon_t
\end{align*}
\]
By recursive substitution

\[z_t = \rho (\rho z_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \]

\[= \rho^2 z_{t-2} + \rho \varepsilon_{t-1} + \varepsilon_t \]

\[\vdots \]

\[= \lim_{k \to \infty} \rho^k z_{t-k} + \sum_{k=0}^{\infty} \rho^k \varepsilon_{t-k} \]

Thus the \(MA(\infty) \) representation of \(AR(1) \) is:

\[z_t = \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + \rho^3 \varepsilon_{t-3} + \ldots \]
AR(1) Process: Mean

- **Theorem:** $E(z_t) = 0 \ \forall t$.
- **Proof.** MA(∞) representation of z_t:

$$z_t = \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + ...$$

Taking expectation:

$$E(z_t) = \underbrace{E(\varepsilon_t)}_{=0} + \underbrace{\rho E(\varepsilon_{t-1})}_{=0} + \underbrace{\rho^2 E(\varepsilon_{t-2})}_{=0} + ... = 0$$
Theorem: \(E (z_t) = 0 \ \forall t. \)

Proof. \(MA(\infty) \) representation of \(z_t \):

\[
z_t = \epsilon_t + \rho \epsilon_{t-1} + \rho^2 \epsilon_{t-2} + ... \]

Taking expectation:

\[
E (z_t) = E (\epsilon_t) + \rho E (\epsilon_{t-1}) + \rho^2 E (\epsilon_{t-2}) + ... = 0
\]
AR(1) Process: Variance

- **Theorem:** \(\text{Var} \left(z_t \right) = \frac{\sigma^2_\varepsilon}{1-\rho^2} \forall t. \)

- **Proof.** \(MA(\infty) \) reprezentation of \(z_t \):

\[
z_t = \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + ... \]

Thus

\[
\text{Var} \left(z_t \right) = \text{Var} \left(\varepsilon_t \right) + \rho^2 \text{Var} \left(\varepsilon_{t-1} \right) + \rho^4 \text{Var} \left(\varepsilon_{t-2} \right) + ... \\
= \sigma^2_\varepsilon + \rho^2 \sigma^2_\varepsilon + \rho^4 \sigma^2_\varepsilon + ... \\
= \sigma^2_\varepsilon \sum_{t=0}^{\infty} (\rho^2)^t = \frac{\sigma^2_\varepsilon}{1-\rho^2} \]
AR(1) Process: Variance

- **Theorem:** \(\text{Var} (z_t) = \frac{\sigma_{\varepsilon}^2}{1 - \rho^2} \forall t. \)

- **Proof.** MA(\(\infty \)) representation of \(z_t \):

\[
z_t = \varepsilon_t + \rho \varepsilon_{t-1} + \rho^2 \varepsilon_{t-2} + \ldots
\]

Thus

\[
\text{Var} (z_t) = \text{Var} (\varepsilon_t) + \rho^2 \text{Var} (\varepsilon_{t-1}) + \rho^4 \text{Var} (\varepsilon_{t-2}) + \ldots
\]

\[
= \sigma_{\varepsilon}^2 + \rho^2 \sigma_{\varepsilon}^2 + \rho^4 \sigma_{\varepsilon}^2 + \ldots
\]

\[
= \sigma_{\varepsilon}^2 \sum_{t=0}^{\infty} (\rho^2)^t = \frac{\sigma_{\varepsilon}^2}{1 - \rho^2}
\]
Theorem: $\text{Cov}(z_t, z_{t-k}) = \rho^k \left(\frac{\sigma^2}{1-\rho^2} \right) \forall t.$

Proof. Start with $k = 1.$

\[
\text{Cov}(z_t, z_{t-1}) = \text{Cov}(\rho z_{t-1} + \epsilon_t, z_{t-1}) \\
= \rho \text{Cov}(z_{t-1}, z_{t-1}) + \text{Cov}(\epsilon_t, z_{t-1}) \\
= \rho \text{Var}(z_t) + 0
\]
Theorem: $\text{Cov} (z_t, z_{t-k}) = \rho^k \left(\frac{\sigma^2 \epsilon}{1-\rho^2} \right) \forall t.$

Proof. Start with $k = 1.$

\[
\text{Cov} (z_t, z_{t-1}) = \text{Cov} (\rho z_{t-1} + \epsilon_t, z_{t-1}) \\
= \rho \text{Cov} (z_{t-1}, z_{t-1}) + \text{Cov} (\epsilon_t, z_{t-1}) \\
= \rho \text{Var} (z_t) + 0
\]
AR(1) Process: Covariance

- **Proof.** next $k = 2$.

\[
\text{Cov} \left(z_t, z_{t-2} \right) = \text{Cov} \left(\rho z_{t-1} + \epsilon_t, z_{t-2} \right) \\
= \rho \text{Cov} \left(z_{t-1}, z_{t-2} \right) \\
= \rho^2 \text{Var} \left(z_t \right)
\]

- Thus

\[
\text{Cov} \left(z_t, z_{t-k} \right) = \rho^k \text{Var} \left(z_t \right) = \rho^k \left(\frac{\sigma^2 \epsilon}{1 - \rho^2} \right)
\]
AR(1) Process: Covariance

Proof. next \(k = 2. \)

\[
Cov \left(z_t, z_{t-2} \right) = Cov \left(\rho z_{t-1} + \epsilon_t, z_{t-2} \right) \\
= \rho Cov \left(z_{t-1}, z_{t-2} \right) \\
= \rho^2 Var \left(z_t \right)
\]

Thus

\[
Cov \left(z_t, z_{t-k} \right) = \rho^k Var \left(z_t \right) = \rho^k \left(\frac{\sigma_\epsilon^2}{1 - \rho^2} \right)
\]
AR(1) Process: Correlation

\[
Corr(z_t, z_{t-k}) = \frac{\text{Cov}(z_t, z_{t-k})}{\sqrt{\text{Var}(z_t)} \sqrt{\text{Var}(z_{t-k})}} = \frac{\rho^k \text{Var}(z_t)}{\sqrt{\text{Var}(z_t)} \sqrt{\text{Var}(z_t)}} = \rho^k
\]
AR(1) Process: Prediction

- One period ahead:
 \[
 E (z_{t+1}|z_t) = E (\rho z_t + \varepsilon_{t+1}|z_t) \\
 = E (\rho z_t|z_t) + E (\varepsilon_{t+1}|z_t) \\
 = \rho z_t + 0
 \]

- Two periods ahead:
 \[
 E (z_{t+2}|z_t) = E (\rho z_{t+1} + \varepsilon_{t+2}|z_t) \\
 = \rho E (z_{t+1}|z_t) \\
 = \rho^2 z_t
 \]

- \(k \) periods ahead
 \[
 E (z_{t+k}|z_t) = \rho^k z_t
 \]
AR(1) Process: Prediction

- One period ahead:

\[E (z_{t+1}|z_t) = E (\rho z_t + \varepsilon_{t+1}|z_t) \]
\[= E (\rho z_t|z_t) + E (\varepsilon_{t+1}|z_t) \]
\[= \rho z_t + 0 \]

- Two periods ahead:

\[E (z_{t+2}|z_t) = E (\rho z_{t+1} + \varepsilon_{t+2}|z_t) \]
\[= \rho E (z_{t+1}|z_t) \]
\[= \rho^2 z_t \]

- \(k \) periods ahead

\[E (z_{t+k}|z_t) = \rho^k z_t \]
AR(1) Process: Prediction

- One period ahead:
 \[
 E(z_{t+1}|z_t) = E(\rho z_t + \varepsilon_{t+1}|z_t)
 \]
 \[
 = E(\rho z_t|z_t) + E(\varepsilon_{t+1}|z_t)
 \]
 \[
 = \rho z_t + 0
 \]

- Two periods ahead:
 \[
 E(z_{t+2}|z_t) = E(\rho z_{t+1} + \varepsilon_{t+2}|z_t)
 \]
 \[
 = \rho E(z_{t+1}|z_t)
 \]
 \[
 = \rho^2 z_t
 \]

- \(k\) periods ahead
 \[
 E(z_{t+k}|z_t) = \rho^k z_t
 \]
AR(1) Process: Prediction

- Example. Suppose that $\rho = 0.9$ and the shock today is $z_t = -1$ (recession).

- Predicted shock next period:

$$ E (z_{t+1} | z_t) = \rho^1 z_t = 0.9^1 \cdot -1 = -0.9 $$

- Predicted shock 10 periods ahead:

$$ E (z_{t+10} | z_t) = \rho^{10} z_t = 0.9^{10} \cdot -1 = -0.34868 $$

- Predicted shock 40 periods ahead:

$$ E (z_{t+40} | z_t) = \rho^{40} z_t = 0.9^{40} \cdot -1 = -0.0148 $$
Example. Suppose that $\rho = 0.9$ and the shock today is $z_t = -1$ (recession).

Predicted shock next period:

$$E(z_{t+1}|z_t) = \rho^1 z_t = 0.9^1 \cdot -1 = -0.9$$

Predicted shock 10 periods ahead:

$$E(z_{t+10}|z_t) = \rho^{10} z_t = 0.9^{10} \cdot -1 = -0.34868$$

Predicted shock 40 periods ahead:

$$E(z_{t+40}|z_t) = \rho^{40} z_t = 0.9^{40} \cdot -1 = -0.0148$$
Example. Suppose that $\rho = 0.9$ and the shock today is $z_t = -1$ (recession).

Predicted shock next period:

$$E (z_{t+1} | z_t) = \rho^1 z_t = 0.9^1 \cdot -1 = -0.9$$

Predicted shock 10 periods ahead:

$$E (z_{t+10} | z_t) = \rho^{10} z_t = 0.9^{10} \cdot -1 = -0.34868$$

Predicted shock 40 periods ahead:

$$E (z_{t+40} | z_t) = \rho^{40} z_t = 0.9^{40} \cdot -1 = -0.0148$$
AR(1) Process: Prediction

- Example. Suppose that $\rho = 0.9$ and the shock today is $z_t = -1$ (recession).
- Predicted shock next period:
 \[E(z_{t+1} \mid z_t) = \rho^1 z_t = 0.9^1 \cdot -1 = -0.9 \]
- Predicted shock 10 periods ahead:
 \[E(z_{t+10} \mid z_t) = \rho^{10} z_t = 0.9^{10} \cdot -1 = -0.34868 \]
- Predicted shock 40 periods ahead:
 \[E(z_{t+40} \mid z_t) = \rho^{40} z_t = 0.9^{40} \cdot -1 = -0.0148 \]
AR(1) Process: Prediction

- $\rho = -0.9$
- $\rho = 0$
- $\rho = 0.9$
- $\rho = 1$
AR(1) Process: Summary of Properties

[Mean] : \(E (z_t) = 0 \)

[Variance] : \(Var (z_t) = \frac{\sigma^2_\varepsilon}{1 - \rho^2} \)

[Autocovariance] : \(Cov (z_t, z_{t-k}) = \rho^k \left(\frac{\sigma^2_\varepsilon}{1 - \rho^2} \right) \)

[Autocorrelation] : \(Corr (z_t, z_{t-k}) = \rho^k \)

[Prediction] : \(E (z_{t+k} \mid z_t) = \rho^k z_t \)
Estimating the Productivity Parameters
Recall

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

where \(A_t = A_0 \left(1 + \gamma_A\right)^t e^{zt}, \]
\[z_t = \rho z_{t-1} + \epsilon_t, \]
\[\epsilon_t \sim i.i.d. \ N\left(0, \sigma^2_\epsilon\right) \]

Goal: estimate \(\gamma_A, \rho, \sigma^2_\epsilon \).
Estimating the AR(1) process

- Recall

\[
Y_t = A_t k_t^\theta h_t^{1-\theta}
\]

where \(A_t = A_0 (1 + \gamma_A)^t e^{z_t}, \) \(z_t = \rho z_{t-1} + \varepsilon_t, \)

\(\varepsilon_t \sim i.i.d. N(0, \sigma^2_\varepsilon) \)

- Goal: estimate \(\gamma_A, \rho, \sigma^2_\varepsilon. \)
Under the assumption of Cobb-Douglas production function, we have:

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

\[\Rightarrow A_t = \frac{Y_t}{k_t^\theta h_t^{1-\theta}} \]

Suppose that we previously calibrated \(\theta = 0.35 \) (capital share), we need data on:

- \(Y_t \) - real GDP
- \(k_t \) - real stock of fixed assets (capital in NIPA)
- \(h_t \) - total number of hours worked in the economy
Obtaining Data on Productivity

- Under the assumption of Cobb-Douglas production function, we have:

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

\[\Rightarrow A_t = \frac{Y_t}{k_t^\theta h_t^{1-\theta}} \]

- Suppose that we previously calibrated \(\theta = 0.35 \) (capital share), we need data on
 - \(Y_t \) - real GDP
 - \(k_t \) - real stock of fixed assets (capital in NIPA)
 - \(h_t \) - total number of hours worked in the economy
Obtaining Data on Productivity

- Under the assumption of Cobb-Douglas production function, we have:

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

\[\Rightarrow A_t = \frac{Y_t}{k_t^\theta h_t^{1-\theta}} \]

- Suppose that we previously calibrated \(\theta = 0.35 \) (capital share), we need data on

 - \(Y_t \) - real GDP
 - \(k_t \) - real stock of fixed assets (capital in NIPA)
 - \(h_t \) - total number of hours worked in the economy
Under the assumption of Cobb-Douglas production function, we have:

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

\[\Rightarrow A_t = \frac{Y_t}{k_t^\theta h_t^{1-\theta}} \]

Suppose that we previously calibrated \(\theta = 0.35 \) (capital share), we need data on

- \(Y_t \) - real GDP
- \(k_t \) - real stock of fixed assets (capital in NIPA)
- \(h_t \) - total number of hours worked in the economy
Obtaining Data on Productivity

- Under the assumption of Cobb-Douglas production function, we have:

\[Y_t = A_t k_t^\theta h_t^{1-\theta} \]

\[\Rightarrow A_t = \frac{Y_t}{k_t^\theta h_t^{1-\theta}} \]

- Suppose that we previously calibrated \(\theta = 0.35 \) (capital share), we need data on
 - \(Y_t \) - real GDP
 - \(k_t \) - real stock of fixed assets (capital in NIPA)
 - \(h_t \) - total number of hours worked in the economy
Estimating \(\gamma_A \) and \(z_t \)

Having data on \(A_t \) and using the form of \(A_t \),

\[
A_t = A_0 (1 + \gamma_A)^t e^{u_t}
\]

Taking log

\[
\log (A_t) = \log (A_0) + t \log (1 + \gamma_A) + u_t
\]

Estimate (OLS)

\[
\log (A_t) = \beta_0 + \beta_1 \cdot t + u_t
\]

\(\hat{\beta}_1 = \log (1 + \gamma_A) \), \(\Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1 \).

\(z_t = \log (A_t) - (\hat{\beta}_0 + \hat{\beta}_1 \cdot t) \), residuals (estimated \(u_t \)).
Estimating γ_A and z_t

Having data on A_t and using the form of A_t,

$$A_t = A_0 (1 + \gamma_A)^t e^{u_t}$$

Taking log

$$\log (A_t) = \log (A_0) + t \log (1 + \gamma_A) + u_t$$

Estimate (OLS)

$$\log (A_t) = \beta_0 + \beta_1 \cdot t + u_t$$

$\hat{\beta}_1 = \log (1 + \gamma_A)$, $\Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1$.

$z_t = \log (A_t) - (\hat{\beta}_0 + \hat{\beta}_1 \cdot t)$, residuals (estimated u_t).
- Estimating γ_A and z_t
- Having data on A_t and using the form of A_t,

$$A_t = A_0 (1 + \gamma_A)^t e^{u_t}$$

- Taking log

$$\log (A_t) = \log (A_0) + t \log (1 + \gamma_A) + u_t$$

- Estimate (OLS)

$$\log (A_t) = \beta_0 + \beta_1 \cdot t + u_t$$

- $\hat{\beta}_1 = \log (1 + \gamma_A)$, $\Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1$.
- $z_t = \log (A_t) - (\beta_0 + \hat{\beta}_1 \cdot t)$, residuals (estimated u_t).
Estimating γ_A and z_t

Having data on A_t and using the form of A_t,

$$A_t = A_0 (1 + \gamma_A)^t e^{u_t}$$

Taking log

$$\log(A_t) = \log(A_0) + t \log(1 + \gamma_A) + u_t$$

Estimate (OLS)

$$\log(A_t) = \beta_0 + \beta_1 \cdot t + u_t$$

- $\hat{\beta}_1 = \log(1 + \gamma_A)$, $\Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1$.
- $z_t = \log(A_t) - (\hat{\beta}_0 + \hat{\beta}_1 \cdot t)$, residuals (estimated u_t).
• Estimating γ_A and z_t

• Having data on A_t and using the form of A_t,

$$A_t = A_0 \left(1 + \gamma_A\right)^t e^{u_t}$$

• Taking log

$$\log (A_t) = \log (A_0) + t \log (1 + \gamma_A) + u_t$$

• Estimate (OLS)

$$\log (A_t) = \beta_0 + \beta_1 \cdot t + u_t$$

• $\hat{\beta}_1 = \log (1 + \gamma_A), \Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1.$

• $z_t = \log (A_t) - (\hat{\beta}_0 + \hat{\beta}_1 \cdot t)$, residuals (estimated u_t).
Estimating γ_A and z_t

Having data on A_t and using the form of A_t,

$$A_t = A_0 (1 + \gamma_A)^t e^{u_t}$$

Taking log

$$\log(A_t) = \log(A_0) + t \log(1 + \gamma_A) + u_t$$

Estimate (OLS)

$$\log(A_t) = \beta_0 + \beta_1 \cdot t + u_t$$

$\hat{\beta}_1 = \log(1 + \gamma_A), \Rightarrow \hat{\gamma}_A = \exp(\hat{\beta}_1) - 1.$

$z_t = \log(A_t) - (\hat{\beta}_0 + \hat{\beta}_1 \cdot t)$, residuals (estimated u_t).
Estimating ρ

- Having times series on z_t, use the AR(1) model:

\[z_t = \rho z_{t-1} + \epsilon_t \]

- Option 1: estimate ρ with OLS.
- Option 2: estimate ρ as $\text{Corr} (z_t, z_{t-1})$.

- Both methods are not efficient, but consistent.
Estimating ρ

Having times series on z_t, use the AR(1) model:

$$z_t = \rho z_{t-1} + \varepsilon_t$$

- Option 1: estimate ρ with OLS.
- Option 2: estimate ρ as $Corr(z_t, z_{t-1})$.

Both methods are not efficient, but consistent.
Estimating ρ

Having times series on z_t, use the AR(1) model:

$$z_t = \rho z_{t-1} + \varepsilon_t$$

- Option 1: estimate ρ with OLS.
- Option 2: estimate ρ as $\text{Corr}(z_t, z_{t-1})$.

Both methods are not efficient, but consistent.
Estimating ρ

Having times series on z_t, use the AR(1) model:

$$z_t = \rho z_{t-1} + \epsilon_t$$

- Option 1: estimate ρ with OLS.
- Option 2: estimate ρ as $\text{Corr} (z_t, z_{t-1})$.

Both methods are not efficient, but consistent.
Estimating ρ

Having times series on z_t, use the AR(1) model:

$$z_t = \rho z_{t-1} + \varepsilon_t$$

- Option 1: estimate ρ with OLS.
- Option 2: estimate ρ as $\text{Corr} (z_t, z_{t-1})$.

Both methods are not efficient, but consistent.
Estimating σ^2_ε

Having obtained $\hat{\rho}$, we have

$$z_t = \hat{\rho}z_{t-1} + \hat{\epsilon}_t$$

- Option 1:
 $$\hat{\sigma}^2_\varepsilon = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \hat{\rho}z_{t-1})^2$$

- Option 2:
 $$\text{Var}(z_t) = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \bar{z}_t)^2$$
 $$\hat{\sigma}^2_\varepsilon = \text{Var}(z_t) \left(1 - \hat{\rho}^2\right)$$
- Estimating σ^2_ε
- Having obtained $\hat{\rho}$, we have

$$z_t = \hat{\rho}z_{t-1} + \hat{\varepsilon}_t$$

- Option 1:

$$\hat{\sigma}^2_\varepsilon = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \hat{\rho}z_{t-1})^2$$

- Option 2:

$$\hat{\sigma}^2_\varepsilon = \text{Var}(z_t) \left(1 - \hat{\rho}^2 \right)$$
Estimating σ^2_{ε}

Having obtained $\hat{\rho}$, we have

$$z_t = \hat{\rho}z_{t-1} + \hat{\varepsilon}_t$$

- Option 1:

$$\hat{\sigma}^2_{\varepsilon} = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \hat{\rho}z_{t-1})^2$$

- Option 2:

$$\text{Var}(z_t) = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \bar{z}_t)^2$$

$$\hat{\sigma}^2_{\varepsilon} = \text{Var}(z_t) \left(1 - \hat{\rho}^2\right)$$
• Estimating σ^2_{ε}
• Having obtained $\hat{\rho}$, we have

$$z_t = \hat{\rho}z_{t-1} + \hat{\varepsilon}_t$$

• Option 1:

$$\hat{\sigma}^2_{\varepsilon} = \frac{1}{n-1} \sum_{t=1}^{n} (z_t - \hat{\rho}z_{t-1})^2$$

• Option 2:

$$\hat{\sigma}^2_{\varepsilon} = \text{Var}(z_t) \left(1 - \hat{\rho}^2\right)$$
Matlab code

<table>
<thead>
<tr>
<th>Step</th>
<th>Matlab</th>
</tr>
</thead>
</table>
| \(\log(A_t) = \beta_0 + \beta_1 \cdot t + u_t \) | \(X = [\text{ones(length}(t),1), t] \)
\(b = X \backslash \log(A); \) |
| Residuals | \(z = \log(A) - X \backslash b; \) |
| Define \(z_t \) | \(z_t = z(2:\text{end}); \) |
| Define \(z_{t-1} \) | \(z_{\text{lag}} = z(1:\text{end}-1); \) |
| \(z_t = \rho z_{t-1} + \epsilon_t \) | \(\text{rho} = z_{\text{lag}} \backslash z_t; \) |
| estimate \(\sigma_\epsilon \) | \(\text{sigma}_e = \text{std}(z_t - \rho \cdot z_{\text{lag}}); \) |