A guided inquiry approach to learning the geology of the U.S.

Mary L. Leech¹, David G. Howell², and Anne E. Egger³

¹Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, mary@geo.stanford.edu, tel: 650-736-1821, fax: 650-725-0979;

²U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025-3561, dhowell@usgs.gov, tel: 650-329-5430, fax: 650-329-4936;

³Math/Science Department, San Juan College, 4601 College Boulevard, Farmington, NM 87402, EggerA@sanjuancollege.edu, tel: 505-566-3325, fax: 505-566-3770

ABSTRACT

A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group’s
findings to the class, describing their geologic provinces and the reasoning behind their choices.

Keywords: education — geoscience; education — general; earth science — teaching and curriculum.

Visit the companion web site for the materials used in this exercise: http://geo.stanford.edu/~mlleech/usgp

INTRODUCTION

This exercise is intended to introduce students to the geology of the United States during one of the first class meetings of the quarter or semester — ideally students approach this exercise without much or any prior knowledge of geology (concept based on Egger, in review; and Sawyer, 2002). Using three maps (see Table 1), students identify and characterize 8 to 12 geologic provinces in the U.S. based on the topography, age of the rocks, and rock types in these regions. Through this exercise, students will: (1) become familiar/comfortable with reading maps and legends; (2) learn basic rock types and how geologic time is divided; (3) define geologic provinces that will form an outline for learning the geology of the U.S.; and (4) be able to discuss the maps they create based on what they have learned.

INSTRUCTOR PREPARATION AND INSTRUCTIONS FOR STUDENTS

Before class, instructors should group tables together for a large work area where maps (see Table 1) can be laid out, or hang copies of the maps on the walls near where groups
will be working. At the start of class, several minutes should be spent reviewing basic rock types, the geologic time scale, and how to read map legends. On an overhead or Powerpoint slide, list the materials each group and each student will need and the instructions for the in-class exercise. Divide students into groups of 3-6 students; once in groups, ask students to work together to define the geologic provinces of the United States.

Ask students to choose ~8-12 regions that are geologically distinct based on the patterns seen in these maps. Each region should be described in terms of topography, the age of the rocks, and the rock types (sedimentary, igneous, or metamorphic). Each student should record all of this information on their copy of the map of the U.S. using colored pencils to outline or color in the regions; each region should be numbered to correspond to its description (see Figure 1 and Table 2).

IMPLEMENTING THE EXERCISE

To begin, tell students to first look at the maps as an image — what kind of patterns do they see? Ask students to determine what the different colors on the maps mean by using the legends. Remind students to only make observations and to avoid interpreting the maps; students should only use the information contained within these maps. Instructors should circulate around the room, asking leading questions if students are having trouble getting started, and clear up any misconceptions.
Several features on these maps will stand out to most students and make the first few choices of geologic provinces relatively easy: on the shaded relief map, students can easily identify the Appalachian mountain belt; on the geologic and age maps, the eastern coastal plain, the plains region, and the midwest craton will be picked out quickly based on regions with similar colors. Ask students to record how they are defining these areas as they go. Provinces in the western U.S. will be more difficult to define; remind students they are trying to generalize based on the information they have in front of them.

At the end of the exercise, have one student from each group present the geologic provinces their group defined to the class. When all groups have had a chance to present their results, the instructor should give an introductory lecture on the geologic provinces of the U.S. using one group's map as a guide. This introduction will provide an outline for what students will learn in the course.

STUDENT REACTIONS AND RESULTS

Student's initial reactions may range from feelings of frustration (possibly resulting from a lack of knowledge of geology or from the large degree of freedom they are given to complete the exercise) to some form of smug overconfidence (thinking they already know everything about the geology of the U.S.). For reactions such as: "This is impossible — I don't know anything about geology" or "I've never done this before", students should be reminded that all of the information they need for this exercise is contained within these three maps and legends. Whatever provinces students define should make sense to them and will be valid choices if they use the maps and legends at
hand. For the confident student, ask them to assist their fellow students and to search for patterns where they do not have a ready explanation.

Students who have some prior knowledge of geology tend to break down the U.S. into a larger number of geologic provinces (e.g., breaking out California's great valley); encourage these students to limit themselves to 8-12 regions maximum and to focus on why those 8-12 regions are similar. These students may also attempt to interpret the geology they are describing for the group (e.g., relating the volcanoes of the Pacific northwest to subduction); these students should be asked to refrain from interpreting the information contained within the maps because it not only detracts from the goals of the exercise for the other members of that group, but many times student's interpretations are incorrect or misleading.

All groups should able to create a map that resembles Figure 1. Groups doing the best work took a more complete set of notes on the characteristics of different regions (topography, age of the rocks, and rock types); these groups are able to discuss their decisions and seem to better understand and enjoy the exercise. Perhaps predictably, smaller groups (3 or 4 students) work best together; larger groups (5 or 6 students) are more likely to contain one or two students who are just "hitchhikers" that tend not participate in discussion and essentially copy down notes from other students.
TIPS FOR SUCCESS

This exercise is best completed with plenty of time — a 2- or 3-hour lecture/lab period or 3- or 4-50 minute sessions are necessary. To encourage students to actively participate, assign a point value to this exercise; while this is intended as an exploratory exercise, many students may need this motivation. As stated before, smaller groups (3 or 4 students) work best; the only limitation for group size should be whether there are enough materials (if using the Jigsaw method initial groups of three are necessary [see instructions below]).

MODIFICATIONS FOR A 1-HOUR CLASS PERIOD

To complete this exercise in a 1-hour class period, review rock types and geologic time in a class period preceding this exercise. One full class period should be dedicated to group work followed by group presentations in a subsequent class. Immediately following group presentations, the instructor should summarize the results of the exercise using one group's map as an outline for an introductory lecture on the geologic provinces of the United States.

THE JIGSAW METHOD APPROACH

The concept of the jigsaw method is to first assign students to a specialty group where they will become "experts" on one part of the overall exercise; these "experts" then reassemble into different groups with students from each specialty group to complete the exercise (e.g., Sawyer, 2002). The jigsaw method creates individual accountability in students by requiring them to bring certain information to the group in order for the group
to succeed. First, students should assemble in their specialty groups with their respective maps: Petrologists at the Geology and/or Rock type maps (see Table 1), Geochronologists at the Tapestry of Time and Terrain and/or Rock age maps (see Table 1), and Geomorphologists at the digital shaded relief map; have students count off from 1 to 3 as they go around the room to assign their specialty groups (e.g., 1 — Petrologist, 2 — Geochronologist, 3 — Geomorphologist). If the class size is large, limit these initial groups to no more than six and create multiple groups for the same specialty (e.g., two Petrology groups — one with six students, another with three). Instruct students to familiarize themselves with their map(s) and learn what the legends represent. In their specialty groups, students should make observations about their maps (taking notes as they go) and avoid trying to interpret their maps. When students in these specialty groups have become sufficiently "expert" with their maps, they will reorganize into new groups that contain one specialist from each field (it may be necessary to have two specialists from the same field if there are an odd number of students). In their specialty groups, have students count off from 1 to \(n \) to identify the geologic province group into which they will reassemble (the total number of groups will depend on class size). In the new geologic provinces groups, students from each specialty group will in turn share their expertise with the other students in the group. Students will then work together using their combined observations in these new groups to produce a geologic provinces map of the U.S., answer questions about their maps, and/or make detailed observations about a specific area (or geologic province, e.g., the Appalachians) in the U.S. following the possible extensions for this exercise in the next section.
The Petrologist and Geochronologist specialty groups may additionally use the four rock type maps (sedimentary, volcanic, plutonic, and metamorphic rocks are separated onto individual maps) and the four rock age maps (Cenozoic, Mesozoic, Paleozoic, and Precambrian rocks are separated onto individual maps), respectively (Table 1). If the class is particularly large, the single Petrologist group may be divided into four separate Sedimentary, Volcanic, Plutonic, and Metamorphic Petrologist groups (likewise, for the Geochronologist group). These additional maps may help groups to mentally/visually organize the information contained within the geologic and *Tapestry of Time and Terrain* maps.

POSSIBLE EXTENSIONS FOR THIS EXERCISE

This exercise was designed for use in an upper division general education class on the geology of the National Parks. Modifications can easily be made to adapt this exercise for use at the middle or high school levels and for adult or teacher education.

For all levels

(1) Add a question sheet to help guide student's eyes around the different maps early in the exercise. Questions might include: What rock types do the yellow colors represent on the geologic map?; What ages of rocks are represented by the color purple?

(2) Add a set of more probing questions for the end of the exercise or for the following class period such as: Where are the oldest rocks in the country?; What characteristics do the rocks have in the mountainous regions of the country?; What is the most common
rock type?; What is the relationship between the ages of the rocks and where they are located (geographically or topographically)?; How are the west and the east parts of the country different?; Why is the west so broken-up looking?; In terms of ages of exposed rocks, list the following U.S. states in order of age, youngest to oldest: Florida, Maine, Minnesota, Oregon, and New York.; Many volcanic rocks run north-south. Do any run east-west?; Can you identify any overlap relationships?; Do you see any odd features? What are they?

(3) Run this exercise as a computer-aided lesson by using the resources available on the U.S.G.S. web site [http://tapestry.usgs.gov].

(4) In the class session following this exercise, assign a specific geologic province that the students identified (e.g., the Appalachians or the Eastern coastal plain) to each group for more focused discussion and discovery.

(5) In addition to referring back to this exercise throughout the term, have students repeat this exercise at the end of the quarter/semester; repeating the exercise with more advanced goals or expectations will reinforce concepts learned in the term and help students realize how much they have learned.

For more advanced students or beginning geology majors

Lower division geology majors or students who have had prior geoscience courses can also be challenged by this exercise by including a more advanced set of questions to
answer such as: Can you find dinosaur fossils in Florida?; Can you explain the origin of the concentric pattern of colors defining the Black Hills?; What is the circular mass in the Sacramento Valley?; Why is the Cordillera in the west much wider than the Appalachian mountains in the east?; Are the topographic surfaces of old rocks flatter than the surfaces of young rocks?; Along the coasts, are rocks generally older or younger than rocks in the interior?; How do the extent of the glaciers compare to topography?; Can you explain the dendritic patterns exposing Ordovician rocks in Ohio and Indiana?; Can you estimate the age of the Rocky Mountain uplift? Based on what evidence?; Speculate on the origin of the north-pointing, anvil-shaped feature in northeast South Dakota.

ACKNOWLEDGMENTS

Many thanks to Kate Barton (U.S.G.S., Menlo Park) for help preparing several digital maps. This exercise is based on a similar exercise for learning the geology of California developed by Anne Egger (in review with the Journal of Geoscience Education) and a very successful jigsaw exercise called Discovering Plate Boundaries that was designed by Dale Sawyer at Rice University [http://terra.rice.edu/plateboundary/intro.html].

REFERENCES CITED

ABOUT THE AUTHORS

Mary Leech is a research fellow at the University of California at Santa Barbara and Stanford University. She received her B.S. in geology in 1994 from San José State University and a Ph.D. in Geological & Environmental Sciences from Stanford University in 1999. Her principal research interests are the tectonometamorphic evolution of ultrahigh-pressure subduction zone complexes in Russia, China, and Norway. She teaches courses with the Stanford Continuing Studies program and at San Francisco State University.

David Howell received B.A. from Colgate University and a Ph.D. from Univ. California, Santa Barbara. Since joining the U.S.G.S. in 1974 his research has involved concepts for the growth and shaping of continents, worldwide distribution of oil and gas, and societal impact of natural hazards. He is President of the Circum Pacific council, Executive Director of the International Landslide Research Group, and a consulting Professor at Stanford University.

Anne Egger received her M.S. in geology from Stanford University in 2001. She worked primarily in the Grouse Creek Mountains, northwest Utah, using geologic mapping and geochronology to constrain the timing of extension and magmatism in the Tertiary. While at Stanford, she also led professional development workshops in the earth sciences for elementary school teachers with the Bay Area Schools for Excellence in Education.
(BASEE), an NSF-funded program. She currently teaches geology at San Juan College, a community college in Farmington, NM.

FIGURE CAPTION

Figure 1. Example of a map of the geologic provinces of the U.S. that students generate at the end of this exercise. Regions numbered 1 to 9 refer to the geologic provinces listed in Table 2 that are characterized by distinctive differences in the topography, age of the rocks, and rock types in that region.