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1. Comment

We thank O'Brien for directing our attention to his
recent publication on modeling of diffusion in
garnets, including one garnet from the Tso Morari
Complex [1], and allowing us to show how our data
and existing interpretation are consistent with his
model. It seems O'Brien wants the timing of
ultrahigh-pressure metamorphism (UHPM) in the
Tso Morari Complex to be the same as the well-
established 46 Ma UHPM event in Kaghan over
500 km to the northwest (e.g., [2]), and is attempting
to reinterpret our U–Pb zircon dating from the Tso
Morari Complex to fit his notion. But rather than
fight the age data, why not develop a model that fits
the data? Guillot et al. [3] describe a warped
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geometry of the Indian subduction plane that places
the Tso Morari Complex and Kaghan at different
depths based on their ages of UHPM; this model
allows for a 55–54 Ma UHP event in the Tso Morari
Complex and a 46 Ma event in Kaghan [4].

In his numerous previous publications [5–8],
O'Brien has reiterated the intuitively obvious require-
ment for steep subduction in order to achieve high-P,
low-T eclogite-facies metamorphic conditions. In fact,
in our paper [9] we cited multiple publications from the
many workers who have discussed a variety of evidence
for an earlier steep subduction period in the India–Asia
collision [7,10–14]. But our subduction model [9] goes
beyond simply describing early subduction as steep—in
order to reconcile the short period of time available for
Tso Morari protolith to enter the subduction zone and
then to metamorphose at UHP conditions at 53.3±
0.5 Ma, subduction must ultimately be vertical. The
subduction model we present quantifies the timing and
angle of subduction, and considers the geometry of a
subduction zone accounting for the strength of
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continental lithosphere; further, we use our model to
calculate and revise the timing of the initial collision
between continental India and Asia from 55 Ma to
57 Ma.

The main result of the new model [1] for diffusion in
garnet as it pertains to the Tso Morari Complex is to
limit the period from UHP to amphibolite-facies
Fig. 1. Depth/pressure vs. time graph showing results of various radiometric
those methods (modified after Fig. 17 in [8]). The exhumation P–T–t path s
recent discovery of coesite and other mineralogical evidence for UHP metam
diffusion modeling of Konrad-Schmolke et al. [1]; one path fits our interpreta
path shows O'Brien's interpretation of our dating based on diffusion modeling
to retrograde metamorphism between 48 and 45 Ma (1) requires all reported a
error younger than the original author's interpretation; (2) requires low-temp
39Ar phengite dates cooling >450 °C, his stated closure temperature for his ga
apatite; bt, biotite; FT, fission-track; gln, glaucophane; grt, garnet; phe, phen
metamorphism to no more than 3 Ma, ending with
garnets cooling below about 450 °C (“where measurable
diffusion in garnet no longer occurs” [15]). O'Brien
states that the results of dating from the multiple
intermediate- to high-temperature geochronometers
given by de Sigoyer et al. [16] all fit, within error, a
3 Ma period from 48 to 45 Ma that brackets the age of
dating methods [9,16,17] plotted in appropriate temperature ranges for
hown is modified from de Sigoyer et al. [16] to account for the more
orphism [18,19]. Two 3-Ma-wide paths are shown following the garnet
tion of U–Pb zircon SHRIMP dating from Leech et al. [9] and the other
in garnet [15]. Note that O'Brien's preferred exhumation path for UHP
ges from high-temperature geochronometers to be half to one standard
erature prograde zircon growth; and (3) incorrectly presumes that 40Ar/
rnet diffusion model. Abbreviations: aln, allanite; amp, amphibole; ap,
gite; WR, whole rock; zrn, zircon.
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UHPM in Kaghan. Because our U–Pb zircon SHRIMP
dates of 50.0±0.6 Ma and 53.3±0.7 Ma precede this
3 Ma period, O'Brien insists our zircons must record
low temperature prograde zircon growth (Fig. 1, black
symbols) and ignores de Sigoyer's [16] c. 55 Ma dates
from eclogite.

It is widely accepted by those working in UHP
terranes that the host rocks to eclogites which contain
UHP index minerals such as coesite and diamond
experienced the same P–T–t path as the eclogite (e.g.,
[20–23]); the presence of coesite in quartzofeldspathic
host rocks to eclogite testifies to this fact [24]. To imply
that the gneisses we dated did not experience UHPM
because they lack coesite is misleading. It is always
difficult to assess metamorphic P–T conditions in
quartzofeldspathic gneisses as they typically do not
contain the appropriate mineral assemblages to make
thermobarometric calculations. We did not report
detailed petrology of the dated samples because the
main purpose of our recent paper [9] was to apply new
U–Pb dating of zircons from Tso Morari gneisses to the
tectonics of continental collision; additional details of
the petrology and U–Pb dating are presented in Leech et
al. [25].

The U–Pb, Lu–Hf and Sm–Nd ages in de Sigoyer et
al. [16] correspond to P–T conditions above the closure
of diffusion in garnet (≥450 °C); we interpret their c.
55 Ma ages to be in agreement with our new data and
show that the rapid exhumation period occurred 53–
50 Ma (Fig. 1, white symbols). O'Brien focuses on his
preconceived 48–45 Ma exhumation period which also
encompasses the 40Ar/39Ar phengite ages at 48±2 Ma
[16]; in fact, 40Ar/39Ar in phengite records a well-
established closure temperature of 400±50 °C [26]
tracking cooling after the cessation of diffusion in garnet
(Fig. 1).

The 3 Ma period that O'Brien chooses (48 to 45 Ma)
for UHP to amphibolite-facies metamorphism in the Tso
Morari Complex spans the time for UHPM in Kaghan
(46 Ma). In order to fit the chronometric data between
48 and 45 Ma, O'Brien must use an extreme inter-
pretation of de Sigoyer's dating: that 55±17 Ma (U–
Pbaln), 55±12 Ma (Lu–Hf), 55±7 Ma (Sm–Nd), 48±
2 Ma (Ar/Arphe), 47±11 Ma (Sm–Nd), and 45±4 Ma
(Rb–Sr) all fall within the same 3-Ma-long period (Fig.
1). Though technically permissible, O'Brien's interpre-
tation requires large errors on all three c. 55 Ma ages
(previously interpreted to record peak metamorphism)
and ignores the significance of those ages (e.g., closure
temperatures in three different radiometric systems).

The most extensively dated UHP terrane is the
Dabie–Sulu belt in eastern China. In the Sulu region,
coesite-bearing zircon domains (cores and mantles)
unquestionably yield the timing for UHPM while
younger quartz-bearing zircon rims record retrograde
zircon growth [27]; in these UHP rocks, no prograde
zircon growth is seen. Leech et al. [28] demonstrate that
U–Pb ages on different zircons from the same area, but
lacking coesite inclusions, record the same span of ages
for peak and retrograde zircon growth as described by
Liu et al. [27] and 40Ar/39Ar dating recording retrograde
metamorphism in the same rocks [29].

Although existing data are not yet sufficient to refute
O'Brien's unconventional interpretation of prograde
zircon growth, our reading of the geochronologic data
satisfies (with a higher probability) all published ages as
well as O'Brien's garnet diffusion model. Our interpre-
tation places the rapid exhumation period between 53
and 50 Ma, followed by continued cooling below the
closure of diffusion in garnet (at ca. 450 °C) to yield the
reliable 40Ar/39Ar phengite age at 48±2 Ma and 40Ar/
39Ar biotite andmuscovite ages at ca. 30Ma (Fig. 1). Not
only does our model satisfy all published radiometric
dating for the Tso Morari Complex, it also avoids the
implication of O'Brien's model that U–Pb zircon dating
interpreted to record peak metamorphism in all UHP
terranes is wrong. Zircon is extraordinarily useful in
interpreting long crustal histories [30] and is widely used
to date peak metamorphism in UHP terranes.

We are continuing to work to link the petrology and
the geochronology of these rocks; interpretations will
always remain somewhat speculative until multiple
zircon growth domains in the same grains are dated and/
or indisputable index mineral inclusions are found
within dated zircon domains.
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