1. Give a proof by contradiction of the following:
 if \(a, b \in \mathbb{Z} \) are such that \(b \) is odd and \(a \) divides \(b \)
 then \(a \) is odd.
 Assume that \(a \) is even so that \(a = 2q \). Since \(a \) divides \(b \):
 \(b = ac = 2qc \). Therefore \(b \) is even, a contradiction.

2. Show that \(n \) is odd if and only if \(3n \) is odd.
 If \(n \) is odd then \(n = 2p + 1 \). But then \(3n = 3(2p + 1) = 2(3p + 1) + 1 \). So
 \(3n \) is odd.
 Conversely (using an indirect proof), if \(n \) is even then \(n = 2q \) so that \(2 \)
 divides \(3n \) and \(3n \) is even.

3. Show by mathematical induction that for all integers \(n \geq 2 \):
 \[
 \sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}
 \]
 For \(n = 2 \) one checks that \(\sum_{k=1}^{2} \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} > \sqrt{2} \). For \(n + 1 \) one writes:
 \[
 \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}} > \sqrt{n} + \frac{1}{\sqrt{n+1}} > \sqrt{n+1}
 \]
 since \(\sqrt{n(n+1) + 1} > n + 1 \) results from \(\sqrt{n(n+1)} > n \)
 which results from \(n(n+1) > n^2 \).

4. Show by mathematical induction that for all integers \(n \geq 2 \):
 \[
 \sum_{k=1}^{n} (k + 1)2^k = n2^{n+1}
 \]
 For \(n = 2 \) one checks \(\sum_{k=1}^{2} (k + 1)2^k = 2 \times 2 + 3 \times 4 = 16 = 2 \times 2^{2+1} \).
 For \(n + 1 \) one writes:
 \[
 \sum_{k=1}^{n+1} (k + 1)2^k = \sum_{k=1}^{n} (k + 1)2^k + (n + 2)2^{n+1} =
 = n2^{n+1} + (n + 2)2^{n+1} = (2n + 2)2^{n+1} = 2(n + 1)2^{n+1} = (n + 1)2^{(n+1)+1}
 \]

5. Consider the sequence defined by \(a_0 = 2, a_1 = 3 \), and
 \(a_{n+1} = 3a_n - 2a_{n-1} \)
 (a) Calculate the next four terms;
 (b) Obtain a formula for \(a_n \) (hint: look at the pattern of \(a_n - 1 \));
 (c) Prove by induction that your formula is correct;
(a) One gets: \(a_2 = 5, \ a_3 = 9, \ a_4 = 17, \ a_5 = 33. \)

(b) Let \(b_n = a_n - 1. \) One has:

\(b_0 = 1, \ b_1 = 2, \ b_2 = 4, \ b_3 = 8, \ b_4 = 16, \) and \(b_5 = 32. \) This suggests \(b_n = 2^n \) and therefore \(a_n = 1 + 2^n. \)

(c) Assume this last formula (which is verified for the first few \(n \)) and consider:

\[
a_{n+1} = 3(1 + 2^n) - 2(1 + 2^{n-1}) = 3 + 3 \times 2^n - 2 - 2 \times 2^{n-1} \\
= (3 - 2) + 3 \times 2^n - 2^n = 1 + 2 \times 2^n = 1 + 2^{n+1}
\]