Abstract

The hillslopes and tributaries within San Pedro Creek Watershed are covered mainly by coastal scrub, chaparral, and dense riparian vegetation while the lower elevation valley is urbanized. Sediment is generated predominately from mass wasting processes as the hillslopes are highly prone to landslide activity from steep slopes with unconsolidated bedrock and are frequently subjected to heavy rainfall. Surface erosion is also significant within the watershed primarily on areas heavily influenced by land use practices resulting in little to no vegetative cover and compacted soils, both modifying flow and increasing runoff. Sediment sources were identified by examining land use change and landslide mapping from historic aerial photography combined with primary field data and GIS modeling. Most sediment produced from landslides was triggered by natural sources while surface erosion was largely generated from anthropogenic triggers. The Middle and Sanchez subwatersheds were found to produce the highest levels of sediment for which sediment abatement techniques were then proposed.
Table of Contents

List of Tables... v
List of Figures ... vi

1. Introduction... 1
 1.1 Purpose and objectives ... 1
 1.2 Project overview ... 1

2. Study Area... 2
 2.1 Geomorphology .. 3
 2.2 Geology .. 8
 2.3 Soils ... 12
 2.4 Land use ... 14
 2.5 Land cover .. 19
 2.6 Climate ... 23

3. Sediment Production... 25
 3.1 Geomorphic and fluvial processes ... 25
 3.1.1 Mass wasting .. 25
 3.1.2 Surface erosion ... 31
 3.2 Anthropogenic influence ... 34
 3.3 Influence of vegetation .. 38

4. Methodology .. 41
 4.1 Aerial photographic interpretation ... 42
 4.2 Field surveys .. 47
 4.3 GIS models .. 48
 4.4 Previous work in SPCW ... 52
 4.5 Synthesis ... 53

5. Results ... 55
 5.1 General patterns: Landslide and gully distribution .. 55
 5.1.1 Impacts of land use change on sediment production .. 57
 5.1.2 Effective drainage .. 68
 5.1.3 Perennial flow .. 73
 5.1.4 SEM ... 76
 5.1.5 SHALSTAB ... 78
 5.1.6 Connectivity ... 80
 5.2 Subwatershed prioritizations ... 91
 5.2.1 North subwatershed ... 93
 5.2.2 Middle subwatershed .. 101
 5.2.3 Middle/South subwatershed ... 109
 5.2.4 South subwatershed ... 112
 5.2.5 Sanchez subwatershed ... 122
 5.2.6 Shamrock subwatershed ... 130
 5.2.7 Pedro Point I subwatershed ... 136
 5.2.8 Pedro Point II subwatershed ... 141
 5.2.9 Crespi subwatershed ... 146
 5.2.10 Unnamed subwatersheds ... 149
6. Conclusions ... 156

6.1 Changes in sediment sources ... 156
6.2 Proposed recommendations for sediment mitigation ... 157
6.3 Limitations .. 163
6.4 Possibilities for future research ... 165
6.5 Contributions of the study ... 165

References ... 166

Appendices
A: Aerial photograph inventory ... 172
B: GIS layers used .. 176
C: Past and current land use cover per subwatershed ... 178
D: Current effective drainage density per subwatershed .. 182
List of Tables

1. Soil erodibility ratings derived from the K- factor and slope .. 51
2. Landslide and gully sources in SPCW categorized by number of events and % of total .. 56
3. Break down of anthropogenic landslide and gully sources categorized by number of events and % of total .. 56
4. Years landslides and gullies were first visible on aerial photographs categorized by number of events and % of total .. 57
5. Landslide “age” at first visible year on aerial photographs categorized by number of events and % of total .. 57
6. General land use patterns per year observed for the entire SPCW in hectares and percent .. 58
7. Total sum of all streams, roads, trails, and drainage channels per subwatershed 68
8. Total effective drainage density per subwatershed .. 71
9. Known areas of perennial flow initiation along tributary branches 74
10. Level of connectivity of possible sources to the stream network as a factor of buffer distance and percent hillslope ... 80
11. SEM model merged with connectivity values from Table 11 to determine the level of connectivity of the SEM ... 81
12. Current land use by subwatershed ... 91
13. Total landslide and gully inventory from those identified on aerial photographs between 1941 and 1997 ... 92
14. Total landslide volume delivery estimates based on levels of connectivity of landslide scars to the stream network ... 92
List of Figures

1. San Francisco, CA, 15 miles north of study area ... 3
2. San Pedro Creek Watershed ... 3
3. SPCW draining northwest to the Pacific Ocean ... 4
4. Slope of SPCW in degrees ... 6
5. Pacifca State Beach looking northwest from Montara Mountain Trail 7
6. Terraced hillslopes altering the geomorphology of natural slopes 8
7. Surficial geology and fault lines of SPCW ... 10
8. Tributary following San Pedro Mountain Fault and draining into Brooks Creek in the upper South subwatershed .. 11
9. Soil complexes of SPCW ... 13
10. USGS topography map of SPCW in 1896 with little urban development and few roads .. 15
11. USGS topography map of SPCW in 1997 .. 15
12. Roads, trails, and public lands of SPCW .. 16
13. Remnant bare soil and erosion from previous off-road use in Pedro Point II subwatershed .. 17
14. Shamrock Ranch with nearby open space and residential development 17
15. Urbanization in the North subwatershed from the valley floor encroaching on the toe slopes of hillsides ... 18
16. Land cover of SPCW .. 20
17. Native evergreen and deciduous scrub assemblages of south-facing hillslopes of the Middle subwatershed from Hazelnut trail .. 21
18. Non-maintained trail in the exotic blue gum eucalyptus and Monterey pine forest in Shamrock subwatershed ... 22
19. Mixed grassland and native deciduous scrub of the upper North subwatershed ... 23
20. Average daily temperatures and precipitation per month displayed on Table 1 .. 24
21. Select landslides triggered from January 1982 storm event that were studied in detail .. 27
22. Oddstad slide in the North subwatershed ... 27
23. Slope angle and properties for nine landslides within Pacifica triggered by the January 1982 storm event ... 28
24. Landslides triggered from January 1982 storm event with corresponding geological units, Pacifica, CA ... 30
25. Rills on the nearly vertical face of an uphill trail cut in the South subwatershed .. 32
26. Gullies along a trail on Cartle Hill in the upper North subwatershed 32
27. Gullies upslope from a trail in the Middle subwatershed 33
28. Fluvial erosion causing incision through a former landslide deposit in an intermittent tributary draining into Sanchez Fork ... 34
29. Severe surface erosion from concentrated Horton overland flow downslope of Coastside Boulevard ... 35
30. Concentrated flow creating surface erosion and increasing the effective drainage density along the Hazelnut Trail draining to South Fork 35
31. Mountain bike trails and constructed features along an otherwise unmaintained trail draining to Shamrock Fork ... 36
32. Burrow hole that may soon lead to piping along the upper edge of complex in a gully the Middle subwatershed.. 37
33. Riparian corridor along Pedro Point I channel.. 39
34. Tree throw from an overturned blue gum eucalyptus .. 40
35. Generalized relative slope susceptibility map of SPCW 43
36a. Pre-1982 debris flow scars and tracks mapped from aerial photographs........ 44
36b. Landslides and tracks from the 1982 storm event superimposed on a 1977 susceptibility map previously created by the author 45
36c. Debris flow susceptibility map updated from the 1977 version with likely debris flow runout paths .. 46
37a. Land use in 1941 with existing roads and trails .. 59
37b. Land use in 1955 with existing roads and trails .. 61
37c. Land use in 1975 with existing roads and trails .. 63
37d. Land use in 1983 with existing roads and trails .. 65
37e. Land use in 1997 with existing roads and trails .. 67
38. Total sum of the stream network, roads, trails, and urban drainage channels per subwatershed displayed in meters .. 70
39. Effective drainage density of the individual subwatersheds displayed in km/km² .. 72
40. Sample tributaries surveyed to determine the area required to maintain perennial flow .. 75
41. Sediment erosion model of SPCW .. 77
42. Relative shallow slope stability measured as a unitless ratio of effective precipitation/transmissivity .. 79
43. Connectivity at concentric distances in meters from the stream network .. 82
44. Results of Table 12 displaying areas significantly susceptible to surface erosion with direct connectivity to the drainage network .. 83
45. SHALSTAB displayed with results of Table 11 displaying relative landslide potential connectivity .. 84
46a. Landslide and gully connectivity to the stream network in Crespi and Pedro Point I and II subwatersheds .. 85
46b. Landslide and gully connectivity to the stream network in Sanchez subwatershed .. 86
46c. Landslide and gully connectivity to the stream network in South subwatershed .. 87
46d. Landslide and gully connectivity to the stream network in Middle subwatershed .. 88
46e. Landslide and gully connectivity to the stream network in North and Crespi subwatersheds .. 89
47. North subwatershed outlined in red indicating significant sediment sources in yellow .. 95
48. Trail network along the upper slopes of the Picardo Ranch .. 96
49. Landslide deposit downslope from trail on Picardo Ranch subjected to surface erosion .. 97
50. Trail eroding into drainage culvert of terraced hillslopes .. 98
51. Rilling upslope of trail on terraced hillslope contributing to the sediment delivered to the drainage ditch ... 99
52. Trail channeling flow and creating a moderate gully draining toward the North Fork .. 100
53. Middle subwatershed outlined in red indicating significant sediment sources in yellow ... 102
54. Slump on terrace between Weiler Ranch Road and the Middle Fork 104
55. Deeply incised drainage in colluvium with repeat history of landslides 105
56. Gully incising through landslide deposit along Weiler Ranch Road 106
57. Incision at culvert from uphill ephemeral drainages 107
58. An ephemeral drainage along a portion of Hazelnut trail 108
59. Middle/South subwatershed outlined in red indicating significant sediment sources in yellow .. 110
60. Surface erosion along an upslope roadcut draining to ditch and culverted under the road directly to the Middle/South fork .. 111
61. South subwatershed outlined in red indicating significant sediment sources in yellow ... 113
62. Erosion along uphill section of lower Hazelnut Trail 115
63. Surface erosion along uphill section of trail ... 116
64. Surface erosion on barren hillslope along Brooks Creek Trail upslope of upper trail ... 117
65. Barren loose soil from upper trail dumping onto lower trail and further downslope ... 118
66. Surface erosion on Brooks Creek Trail with rilling in unconsolidated landslide deposits on the upper trail cut ... 119
67. Surface erosion along Brooks Creek Trail ... 119
68. Channel along Brooks Creek Trail draining on the upper slopes 120
69. Surface erosion upslope from road eroding directly to drainage ditch 120
70. Control structures implemented after a slide ... 121
71. Sanchez subwatershed outlined in red indicating significant sediment sources in yellow ... 123
72a. Severe mass wasting and subsequent surface erosion downslope of Coastside Boulevard draining to Sanchez Fork ... 124
72b. Same source as shown in Figure 70a taken over 8 months later after one complete rainy season ... 124
73. Rutted trail heavily utilized by mountain bikers 125
74. Surface erosion along compacted and gullied trail on the ridgeline between Sanchez and Shamrock subwatersheds .. 126
75a. Loose unconsolidated soil exposed from significant recreational use 126
75b. Loose unconsolidated soil exposed from significant recreational use 127
76. Channel with significant incision and very exposed tree roots adjacent to heavily compacted trail ... 127
77. Deep channel incision into landslide deposit ... 128
78. Trail cut eroded to bedrock with sediment accumulation along the base from surface erosion along upslope soils ... 129
79. Shamrock subwatershed outlined in red indicating significant sediment sources in yellow ... 131
80. Shamrock Ranch in the base of the Shamrock valley with sparsely vegetated fields used for grazing ... 132
81. Incision in trail routing sediment directly into stream 133
82. Gully formed from culverted flow downslope of Highway 1 134
83. Sediment in excavated culvert draining directly to stream along the trail upslope from the Shamrock Ranch .. 135
84. Nearly impervious compacted trail used significantly by mountain bikers 135
85. Pedro Point I subwatershed outlined in red indicating significant sediment sources in yellow ... 137
86. Channel incision from culvert draining the urbanized hillslope 138
87. Channel incision from another culvert draining the urbanized hillslope and accumulated flow from culvert .. 139
88. Severe surface erosion on trails that have not yet established connectivity in the upper Pedro Point I subwatershed .. 140
89. Pedro Point II subwatershed outlined in red indicating significant sediment sources in yellow ... 142
90. Surface erosion along former trails .. 143
91. Surface erosion along former trails .. 144
92. Erosion to bedrock exposing tree roots along upper trail cut 145
93. Crespi subwatershed outlined in red indicating significant sediment sources in yellow ... 147
94. Surface erosion over unconsolidated material delivering sediment to the downslope trail and adjacent drainage .. 148
95.Unnamed subwatersheds outlined in red indicating significant sediment sources in yellow ... 150
96a. Severe gully in drainage downslope of paved Coastside Boulevard 151
96b. Severe gully in drainage downslope of paved Coastside Boulevard 152
97. Convergence of flow from rutted upper trail and partially paved lower trail ... 153
98. Undercut vegetation and exposed tree roots on upper trail cut along Coastside Boulevard ... 154
99. Erosion control tarps washed downslope of trail on landslide deposit 154
100. Ephemeral drainage from upslope switchbacks 155
101. Existing and apparently effective sediment control measures implemented in Pedro Point II subwatershed ... 158
102. Tree and shrub cuttings (at arrow) placed along trail in an area with deep incision to reduce erosion and promote vegetation growth 159
103. Large gravels spread onto the nearly impervious surface of the road 160
104. Ineffective erosion control structures .. 161
105. Tarps proving to be ineffective control measures have washed downslope of an area of an eroding area along the Coastside Boulevard 161
106. The partially paved surface of the Coastside Boulevard 162
107. Unconsolidated landslide material along the upper hillslope of the Valley View Trail in the Middle subwatershed .. 163