A Novel Problem for a Vintage Technique: Using Mixed-Integer Programming to Match Wineries and Distributors

Susan Cholette
Decision Sciences Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, cholette@sfsu.edu

Wine is California’s most valuable agricultural product, contributing $45 billion to the state’s economy through direct sales and secondary revenues, such as from wine tourism (MKF Research 2004). The state has more than 1,500 wineries and a 90 percent share of American wine production (Wine Institute 2003). However, the vast majority of these wineries are small, family businesses that face increasingly difficult barriers in getting their wines to market.

As the repeal of prohibition has mandated, alcohol sold in the United States must pass through a three-tiered distribution system. Each state has its own special regulations, with distribution a necessary middle tier. After an era of consolidation, 20 distributors now control over 70 percent of the national wine market (National Wine and Spirits, Inc. 2004). Most of these seek to represent high-volume brands, such as Kendall-Jackson or Turning Leaf. A Wine Institute (2003) survey shows that 75 percent of the wineries polled felt that distributor consolidation has adversely affected their ability to find representation.

Some wineries seek to bypass the perceived distribution bottleneck by relying on direct consumer sales. While many states allow direct consumer shipments, which are increasing, this channel accounts for only 10 percent of total US wine sales (Cholette 2004). Despite the recent Supreme Court ruling prohibiting discriminatory interstate shipping restrictions, this channel will remain of limited potential. Therefore, the many small vintners who wish to continue to exist as independent entities may have to partner with specialty distributors who seek lesser-known brands for wine shops, restaurants, and other clients looking for more variety. Such distributors are usually small businesses with limited geographic presence. To find such potential partners, wineries often must visit the distributors’ offices or attend trade shows, at great expense in time and money.

A partnership between a winery and a distributor involves many considerations. One is that wines are highly differentiated products. They range in price from $2 to hundreds of dollars per bottle and include blended wines and many different varietals (wines made from a single grape variety, such as merlot). As Cutler (2005) documents, distributors expanding their portfolio of wine brands often have very specific needs. For instance, they may seek new zinfandels, but only within the $14 to $24 price range.
Geography is another factor for both wineries and distributors. Wines from prestigious California regions such as Napa and Sonoma tend to be more desirable than those from California’s Central Valley. However, some distributors seek wines from less established regions, such as the Santa Barbara area, which the recent movie *Sideways* made popular. Likewise, specialty distributors often have a limited domain—the states where they are licensed by the local government to transport and sell alcoholic beverages. Rather than attempt to distribute its wines across a nationwide client base, a winery may prefer to strategically target smaller regions, such as Florida or the New York Tri-State area. Lastly, transaction volumes must be a consideration. A distributor who requests a 100-case allocation of a winery’s 1,000 cases of Paso Robles zinfandel leaves that winery in need of a market for the remaining 900 cases.

The 2004 World Wine Market

The World Wine Market is an example of a trade show that wineries attend to find representation. Gerry Parker and Clarke Smith organized the show and private investors have produced it annually for four years. In May 2004, I worked with them to create and execute a matching program for the trade-show attendees. The program goal was not to mandate definitive matches between wineries and distributors, but rather to prequalify potential pairings, allowing them to arrange meetings in advance.

We employed Web-based questionnaires for both wineries and distributors to collect data on participants’ attributes and preferences, as Table 1 shows. We contacted all preregistered attendees before the show and provided them with a set of questions. A subset of those contacted completed the forms. These included 45 wineries from California and Oregon and 15 distributors seeking wines to purchase or represent. Wineries entered over 200 distinct wines for consideration and distributors provided 56 inquiries.

In such a situation, many of the wines offered will not fit a particular distributor’s needs. Likewise, many of the distributors may not represent states that interest a particular winery. Even in a relatively small trade show, such as the World Wide Market, the ability of the participants to find potential matches is limited. Other trade shows are often much larger; for example, over 2,000 wineries exhibited at the 2005 Vinexpo, a biannual trade show in Bordeaux, France. Such a large trade show makes the task of finding appropriate partners even more difficult. Prequalifying potential pairings is beneficial to both wineries and distributors. Thus, my assignment was to apply operations research methodologies to this task.

The Winery-Distributor Matching Model

I formulated and implemented a mixed-integer program to assist wineries and distributors in their search for partners. The appendix shows the mathematical formulation. This model is an embellished transportation model. In addition to the volumes transacted, it has an extension to consider the value and legality of the matches. Transportation models are a classic operations research application, with formulations presented as early as the 1940s (Schrijver 2002) and solution techniques published by RAND researchers, such as Ford (1956), over a half century ago. Despite the rich history and widespread adaptation of this type of problem across many industries, my program appears to be the first application to assist with placing wines in the distribution tier. The closest reference I found to using mathematical-programming techniques for modeling wine distribution was Fulkerson’s (1966) application.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Location</th>
<th>Winery</th>
<th>Preferences</th>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Markets represented (50 states, District of Columbia)</td>
<td></td>
<td>Desired markets by market (up to six inquiries allowed) specifying Type of varietal or blend Region Price range Cases desired</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Wines (six wines allowed to be specified)</td>
<td></td>
<td>Type of varietal or blend</td>
<td></td>
</tr>
<tr>
<td>Type of varietal or blend</td>
<td>Price</td>
<td></td>
<td>Price range</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>Cases available</td>
<td></td>
<td>Cases desired</td>
<td></td>
</tr>
<tr>
<td>Cases available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Participants’ attributes and preferences show that both wineries and distributors have characteristic attributes as well as preferences regarding the attributes they seek in potential partners.
of the assignment problem for inventory control by calculating the optimal depletion schedule for one’s personal wine cellar.

The first consideration was defining the model’s indices. Clearly, this should include tracking both the wineries and their products (defined as the winery’s different brands and types of wine). The need to record which specific distributor inquiry a winery’s product fulfills is less obvious. However, the following example illustrates this need. A distributor may be willing to pay no more than $15 for a generic California zinfandel but up to $25 for a Sonoma zinfandel. A single winery may offer multiple zinfandel wines at a variety of prices, depending on whether the wine is from a prestigious appellation (an industry-approved wine region) like Sonoma. Therefore, the model must consider the additional dimension of the distributor’s specific inquiry.

Mixed-integer problems can grow in size, making a solution more difficult. Many modelers have addressed this by applying presolution calculations to limit the effective problem size. For example, Dillon and Kontogiorgis (1999) greatly restrict the solution space of their crew-scheduling, integer-programming application. I used database filtering to remove all mismatches from consideration and determined that only 476 winery-product and distributor-inquiry pairings had any potential. This represents four percent of the 12,296 combinations possible between the 212 winery products and the 56 distributor queries. This presolution process resolves varietal and appellation concerns, enabling the model to forgo defining varietal or appellation as indices. It also requires no further constraints to enforce compliance during the model other than Equation (2), which sets the upper limit of the variables. Thus, the problem size cannot grow and the formulation is simplified, respectively.

Constraining the Problem
The next two sets of constraints, which are typical for transportation models, enforce supply and demand conditions. Equation (3) ensures that the supply of wines for each winery’s product is not exceeded and Equation (4) prevents any distributor’s inquiry from being overfilled. The available supply of a wine does not have to be allocated completely, nor do the full demands of a distributor have to be met.

The model allows a winery’s product to be allocated across multiple distributors, provided the distributors’ domain constraints are not violated and multiple wines can be used to satisfy a single distributor’s inquiry. It does not enforce complete coverage; some wineries, perhaps because of price, may receive no matches. Thus, this problem of matching wineries with distributors deviates from the requirements of both the classic assignment and set-coverage problems.

Equation (5) acknowledges that a match between a winery and a distributor occurs should these two parties transact any volume of wine. Equation (6) and the underlying business realities that motivate its inclusion explain the need to define matches. This makes the problem mixed-integer rather than a linear, continuous formulation. One of the side effects of regulating the alcoholic-beverage market is that the distribution tier for alcohol is not very competitive. In particular, distributors often expect to have the monopoly on distributing a particular wine anywhere within their domain, i.e., the states where they are licensed to do business. In certain states, “primary source” rules enforce this expectation, allowing a distributor to insist on sole rights of representation, and even prevent a client winery from leaving to form a new relationship with another distributor in that state. Thus, I constrain a winery from forming more than one match among the subset of distributors that overlap in its domains, i.e., have at least one state in common, as Figure 1 illustrates. Assignment-type problems, such as scheduling applications, often have these types of logical constructs. For example, Hertz and Robert (1998) devise both a schedule and a student roster for a set of classes, avoiding double booking either the professors or students.

![Figure 1:](image-url)
Additionally, a winery with existing distributor relationships should not be matched to distributors whose domains overlap with the winery’s current partners. Referring to Figure 1, if a winery already distributes in California, it should not be assigned to D1. The presolution calculations enforce this restriction by setting the upper bounds on volumes allocated.

Determining the Objective Function and Coefficients

One of the goals of this program is to increase the commerce between wineries and distributors by maximizing the volume of wine allocated. However, I needed to consider an additional aspect of these relationships—that certain matches may be more strategically beneficial to wineries than other matches may be. Small wineries often cannot sell effectively to all states and must target specific geographic areas. Wineries may wish to focus their efforts on specific markets because their wines hold greater appeal for their demographics, such as the greater concentration of retirees in Florida and Arizona. A winery’s desire to access a market may even stem from having many potential customers who, when they visited the winery as tourists, asked if the wines are sold in their state. Given that it may be more beneficial for a winery to form a relationship with a distributor in its most desired market than to move a larger volume of wine to a state that holds less strategic interest, the next step was to construct objective coefficients that reflect this reality.

In the initial questionnaire, wineries were allowed to list up to eight desired markets, selected from the 50 states and the District of Columbia, ranked in order of preference. While some wineries listed only one, most listed multiple markets and some used all eight slots available. The model gives greater weight to a winery’s stated preference for a market if the winery ranks that market as a high priority or if the winery is interested in only a few markets. Table 2 shows how I converted the ordinal rankings to cardinality. For each row, the series of numbers representing cardinal preferences decreases at an approximately uniform rate and sums to one.

I measured a distributor’s geographical attractiveness for a winery by summing the winery’s cardinal preferences for the markets available within that distributor’s domain. This summation ranges between zero (no overlap) and one (all the winery’s desired markets are represented). The closer the summation is to one, the more geographically attractive that distributor is for a particular winery, as the following example illustrates.

Winery W1 seeks representation in four states, ranking NY as its highest priority, followed by NJ, WA, and VA, while winery W2 seeks representation in seven states, with CA as its highest priority, followed by NV, NY, NJ, FL, CO, and MA. Distributor D2 has license to distribute in NY, NJ, and PA. Thus, this distributor has both W1’s first and second choice states, and W1’s cardinal preferences for these states are obtained by referring to row 4 in Table 2 as 0.325 and 0.275, respectively. D2 has only W2’s third and fourth choice states, resulting in cardinal preferences of 0.18 and 0.14. Geographical attractiveness of D2 for W1 is 0.60 but is only 0.32 for W2. As D2 more closely fits the geographical preferences of W1, the matching process would favor allocating wine to D2 from W1 rather than from W2, assuming that all other factors are equal.

These measures of geographical attractiveness serve as the model’s objective-function coefficients, modifying the value of the volume of products allocated between a winery and a distributor. When formulating a mathematical program with objective coefficients that are not exogenous prices, but are determined in part by user input, it is important to

<table>
<thead>
<tr>
<th>Markets sought</th>
<th>1st choice</th>
<th>2nd choice</th>
<th>3rd choice</th>
<th>4th choice</th>
<th>5th choice</th>
<th>6th choice</th>
<th>7th choice</th>
<th>8th choice</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.383</td>
<td>0.333</td>
<td>0.284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.325</td>
<td>0.275</td>
<td>0.225</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>0.25</td>
<td>0.1</td>
<td>0.15</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>0.29</td>
<td>0.24</td>
<td>0.19</td>
<td>0.14</td>
<td>0.09</td>
<td>0.05</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>0.26</td>
<td>0.22</td>
<td>0.18</td>
<td>0.14</td>
<td>0.1</td>
<td>0.06</td>
<td>0.04</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>0.23</td>
<td>0.2</td>
<td>0.17</td>
<td>0.14</td>
<td>0.11</td>
<td>0.08</td>
<td>0.05</td>
<td>0.02</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2: In defining a winery’s cardinal preference for a market, the row corresponds to the number of markets a winery is seeking, and the column to the ordinal ranking the winery has given to that market. For example, a winery seeking distribution in five markets and ranking Ohio third would result in a value of 0.2 for Ohio.
consider the ramifications of these coefficients and their calculations. Subtle variations can cause unanticipated effects, creating systematic bias or even allowing for participants’ gaming of the system. Grandine (1998) illustrated this in a mathematical-programming application that allocated a set of season tickets to a group of baseball fans based on self-reported preferences and restrictions. The use of this weighting scheme not only allows the quantification of a distributor’s geographical attractiveness for comparison, but also helps ensure that wineries seeking a narrow area of distribution are more likely to find a distributor in their specific market.

Results

Armed with a model and the raw input from the questionnaires the wineries and distributors completed, I used CoinGlpk, an open-source optimizer from the Computational Infrastructure Operations Research Project, available for the GAMS modeling environment (GAMS Development Corporation 2005), to solve the problem and generate the optimal allocation. Model-generation and solution time were both under one second.

I spent significant time cleansing and formatting data because the questionnaires allowed free-form text inputs, which resulted in many nonstandard answers. Participants often gave prices in different units of volume or provided alternative spellings and abbreviations for varietals and states. Thus, I did not have effective access to all the participants’ varietal and pricing information within the limited time before the trade show. I was able to solve a relaxed problem and provide wineries and distributors with recommended matches based on geographic attributes and preferences. Later, I sent participants their matches based on all the input they had provided, and continued to develop the model in anticipation of future opportunities to employ such matching services.

The optimization of the full mixed-integer program recommended 31 distinct winery-distributor pairings. These matches would enable the distribution of 60 different products because some distributors were allocated multiple products from a single winery. The aggregate volume allocated from these matches totaled just over 50,000 cases; this represents 40 percent of the volume that might have been theoretically possible because distributors’ inquiries totaled 124,000 cases and wineries had even more wine available. However, inappropriate matches and other considerations restricted the volumes traded.

I had no authority to force these matches or to prevent others from occurring. Therefore, I only suggested these optimized pairings. We can use an analytic model to recommend matches based on quantifiable attributes but cannot account for subjective factors, such as whether the distributor approves of the taste of a winery’s products. Therefore, participants did view these as suggestions rather than as mandates. I provided participants not only with their optimized matches but also with a list of all potential pairings, sorted by decreasing order of geographical attractiveness. While a winery could consider distributors other than those recommended, it would have had to check to avoid violations of overlap within distributors’ domains.

Informal participant feedback from both the limited-functionality initial matching and from the followup detailed matching was very positive, demonstrating substantial interest for continued participation. Wineries and distributors have asked to be kept informed of future matching-program developments. At least one winery and distributor the program introduced have forged a long-term, profitable partnership.

Determining the Benefits

It is difficult to measure the monetary benefits from the matching program definitively. A winery’s ability to find a match through this program provides revenues that it might not otherwise have generated, either because the winery might have had to sell the wine at a discount or had difficulty placing the wine at all. We can calculate the following speculative estimate. The retail price of 50,000 cases, which the program matched, averaged $200 per case. Wineries typically realize half of the retail price. Assume that half the matches recommended actually occurred and that of those matches, 40 percent of these wines would not have otherwise been sold, but the remaining 60 percent would have been sold without requiring discounts. We could estimate the overall revenue
improvement for the group of wineries that participated in this program to be $1 million.

Distributors do not have the same potential for increased revenues. Wine Institute (2003) statistics show that wine is in global oversupply, with worldwide production at about 120 percent of global consumption. Distributors may prefer to have a balanced portfolio of price-appropriate California and Oregon wines. However, if they are unable to obtain appropriate matches, they will likely be able to find other wines to represent, such as imports from Chile and Argentina.

Both wineries and distributors benefit by saving time and money when they use this process to find matches because they can prescreen potential business partners before attending trade shows. I intend for this program to be the basis of a virtual trade show where wineries and distributors would be able to participate online at no cost, receiving a list of new matches on demand or on a periodic basis. Virtual trade shows avoid the loss of time associated with traveling to physical trade shows and save the winery the expense of purchasing booth space, which ranges from hundreds to tens of thousands of dollars per show.

The generation of aggregate-market information is an additional benefit. For example, Figure 2 shows that participating wineries and distributors had divergent expectations on pricing. Generally, wineries offered products priced higher than many distributors sought. A winery with products having a target retail price of $50 per bottle would have found no matches in this program. Those in the second most populated price segment, $25 to $50 per bottle, faced much competition for very little distributor interest. Wineries should consider this in determining pricing strategies or deciding which of their wines to enroll in a matching program.

We can extract similar information to determine the popularity of the different wine varietals and regions, as well as the wineries’ demand for markets represented by distributors. This information would also help me to target additional participants, based on needs that are not being adequately met. For instance, while 19 wineries desired representation in Massachusetts, only one distributor participating in the initial matching effort covered this state. Therefore, it would be comparatively more beneficial for the wineries if I could enlist more distributors with licenses for Massachusetts.

Conclusion

Constructing and administering a matching program such as this is an iterative process. In the next phase, I plan to recruit more wineries and distributors to participate by using updated online questionnaires, as well as surveying prior participants on how to improve the matching experience. Since the project recently received a Business and International Education grant from the US Department of Education, further development will include an emphasis on exporting US wine, with wineries offered the option of seeking representation within international markets. At the completion of the project, I anticipate having an online program that an industry interest group, such as the Wine Institute, one of the grant’s external advisors, will maintain in perpetuity. In the meantime, I look forward to continuing to apply methods of operations research to the challenges of the wine industry.

Appendix

Model Formulation

As we described in this paper, the model maximizes the weighted volume of wine traded over preferred markets, subject to qualification based on mutual fit and the constraints of supply, demand, and avoidance of domain overlap.
Sets
\(w \in W \) wineries.
\(p \in P_w \) a winery's products (wine), up to six products allowed per winery.
\(d \in D \) distributors.
\(q \in Q_d \) a distributor's inquiries, up to six inquiries allowed per distributor.
\(s \in S \) markets, defined as the 50 US states and the District of Columbia.

Data Parameters
Volumes are measured in cases, where one case = 12 750 ml bottles.
\[L_{d,s} = \begin{cases}
1 & \text{if distributor } d \text{ has a license to distribute in market } s, \\
0 & \text{otherwise.}
\end{cases} \]
\[E_{w,s} = \begin{cases}
1 & \text{if winery } w \text{ already has representation in market } s, \\
0 & \text{otherwise.}
\end{cases} \]
\[R_{w,s} \] cardinal preference of a winery \(w \) for market \(s \), as determined by Table 2.
\[S_{w,p} \] supply (cases) of product \(p \) by winery \(w \).
\[D_{w,q} \] demand (cases) for inquiry \(q \) by distributor \(d \).
\[M_{w,d} \] upper limit of cases that could be allocated from winery \(w \) to distributor \(d \).
\[\overline{v}_{w,p,d,q} \] upper limit of cases of product \(p \) that could be allocated from winery \(w \) to distributor \(d \) to satisfy inquiry \(q \).

Variables
\[v_{w,p,d,q} \] volume (cases) of winery \(w \)'s product \(p \) allocated to meet distributor \(d \)'s inquiry \(q \).
\[m_{w,d} = \begin{cases}
1 & \text{if any product from winery } w \text{ is allocated to distributor } d, \\
0 & \text{otherwise.}
\end{cases} \]

Presolution Calculations
Distributor Overlap with Other Distributors: This is a lower triangular \(|D| \times |D|\) matrix indicating where two distributors' domains overlap, and is used within the constraint that prevents matches, which would create distributor overlap:
\[DO_{d_1,d_2} = \sum_{s \in S} L_{d_1,s} L_{d_2,s} \quad \forall d_1, d_2 \in D \mid d_1 > d_2. \]

Winery's Existing Overlap with Distributors: This is a \(|W| \times |D|\) matrix indicating where distributors' domains overlap with each winery's existing distribution. This matrix is used in the next set of presolution calculations, which determine the upper limits for volumes transacted:
\[EO_{w,d} = \sum_{s \in S} E_{w,s} L_{d,s} \quad \forall w \in W, d \in D. \]

Upper Limit Checks: Product \(p \) from winery \(w \) will be eligible to meet distributor \(d \)'s inquiry \(q \) if it satisfies the distributor's desired varietal and appellation, falls within the accepted price range, if geographic overlap exists between winery's \(w \) desired markets and \(d \)'s domain of distribution, and no potential conflict occurs with a prior distributor relationship. This last condition is satisfied if the \(w, d \) entry in matrix \(EO_{w,d} \) is zero. If all these eligibility conditions are satisfied, the upper limit for this decision variable will be set to the minimum of the winery's available supply and the distributor's demand:
\[\overline{v}_{w,p,d,q} = \begin{cases}
\min(S_{w,p}, D_{w,q}) & \text{if allocation is possible,} \\
0 & \text{otherwise.}
\end{cases} \]

Objective Function
Maximize the weighted volume of all wine matched, weighted by the geographical attractiveness of a distributor for a winery:
\[
\max \sum_{w \in W} \sum_{d \in D} \left(\sum_{s \in S} R_{w,s} L_{d,s} \right) \sum_{p \in P_w} \sum_{q \in Q_d} v_{w,p,d,q}.
\]

Constraints
Enforcement of Upper Limit: The potential wine to be matched is bounded to be below the limits set in the presolution phase:
\[v_{w,p,d,q} \leq \overline{v}_{w,p,d,q} \quad \forall w \in W, p \in P_w, d \in D, q \in Q_d. \]

Supply of Wineries' Products Available: The summation of cases of a winery's product allocated over all distributors must not exceed the winery's availability for that product:
\[
\sum_{d \in D} \sum_{q \in Q_d} v_{w,p,d,q} \leq S_{w,p} \quad \forall w \in W, p \in P_w.
\]

Demand Cap for Distributors' Inquiries: The total cases of products allocated from all wineries to satisfy a distributor's inquiry must not exceed what the distributor has requested:
\[
\sum_{w \in W} \sum_{p \in P_w} v_{w,p,d,q} \leq D_{w,q} \quad \forall d \in D, q \in Q_d.
\]
Match Acknowledgment: A match between a winery and a distributor exists if any of that winery’s products are allocated to meet any of the distributor’s inquiries:

$$M_{w,d}m_{w,d} = \sum_{p \in P_{w,d}} \sum_{q \in Q_{d}} v_{w,p,d,q} \geq 0 \quad \forall w \in W, d \in D. \quad (5)$$

Distributor Overlap Prevention: If two distributors’ domains overlap, at most one match is made to those distributors for any one winery:

$$m_{w,d1} + m_{w,d2} \leq 1 \quad \forall w \in W, d1, d2 \in D \mid DO_{d1, d2} > 0. \quad (6)$$

References

Mark Geldon, owner of JanKris Winery, 1266 Bethel Road, Templeton, California 93465-9491, wrote in a memo dated November 13, 2005: “I and my family own and operate JanKris Winery, which we started 15 years ago. JanKris is a medium-sized winery located in Paso Robles, an up and coming wine region that until recently has been a bit of a secret to the rest of the nation. While we offer many single varietals at moderate prices, our signature products are our unique blends, such as Crossfire, a blend of Cabernet, Merlot, and Syrah. Thus while we have many local customers, we needed some assistance in getting better known outside California. Trade shows can be wonderful opportunities for promoting our brand, but they are often overwhelming and hectic events. Furthermore, as our winery is a family endeavor, we cannot afford the time, staff, and expenses to go to every trade show. A matchmaking service like this fills a useful function, and to my knowledge, no such prior program existed.

“We attended the World Wine Market in 2004 seeking to expand our distribution further east. Before arriving at the conference, we received notification about a new matching program that we had the option to participate in. We provided our product and winery description in an online survey. When we got to the conference, we were given a list of potential distributors with whom we had mutual interests. One of those distributors, Colorado-based Superior Brands, immediately sought us out at our table. The owner and CEO, Scott Curtis, was looking for wines from our region and at our price range and saw JanKris on the matching list that Dr. Cholette had provided for him. Superior Brands has turned out to be an absolute gem of a distributor; it is now the second most productive distributor we have out of 23 states. We are also currently in the process of creating a custom label program for them.

“In summary, if it was not for the matching program I do not believe we would have ever connected and created such a profitable relationship. We are very happy with our results and will continue to work with Dr. Cholette and participate in the next version of the program, as there are still many states and possibly some export markets that we would like to reach. Use of this matching service will help us pursue these opportunities in an economical and time saving way.”

Scott Curtis, CEO of Superior Brands, 7343 South Quince Court, Centennial, Colorado 80112, wrote in a memo dated October 30, 2005: “I am the CEO of Superior Brands, a Colorado-based specialty distributor that represents small wineries and other
alcoholic beverage producers from around the world. Dr. Cholette and I first met at the 2004 World Wine Market in San Francisco where she provided the algorithms and output to a matching program in which I participated.

“As a small specialty distributor, we compete with the large distributors by representing quality products from lesser known producers. To maintain our competitive advantage, we must partner with small wineries that produce high-quality wines which are still priced competitively with widely available big brands. It is a challenge for a company like ours to locate small to mid-size suppliers that produce award-winning products but have not been locked up by other distributors.

“Thanks to the matchmaking recommendations Dr. Cholette generated for us, I was able to quickly find an appropriate winery that met the needs of Superior Brands. JanKris is now one of the best selling brands in our book, and we are even partnering with them to produce our new private label blend for a side project that benefits the Children’s Health Organization.

“As a small business owner in Colorado, I also appreciate the ability to qualify new wineries without having to travel to an out-of-state trade show. We are very happy with our results, and we will continue to participate in the next version of the matching program, which Dr. Cholette is creating to be a Web-based continual matchmaking service.”