Psychology of Men & Masculinity

When Boys Wear Pink: A Gendered Color Cue Violation Evokes Risk Taking
Avi Ben-Zeev and Tara C. Dennehy

CITATION
A primary way to signal gender differences starting in infancy is via a clothing color cue (pink is for girls, not boys). We examined whether a violation of this seemingly innocuous gendered prescription would lead to differential decision making regarding infants’ health and well being. In Experiment 1, participants were given an adaptation of the Asian Disease Problem (Tversky & Kahneman, 1981) describing a flu outbreak expected to affect male infants, who were dressed in pink or blue. Participants tended to choose the risk-averse treatment for boys in blue, consistent with Tversky and Kahneman’s theorizing and findings. In contrast, participants tended to opt for the risk-taking treatment for boys in pink, consistent with research highlighting people’s tendency to place lower subjective value on the lives of individuals who belong to socially devalued groups. Experiment 2 ruled out a possible expectancy effect with a different natural category. We discuss the reification of clothing color for demarcating masculinity as a societal attempt at policing gender and situate the findings in a cognitive consistency framework.

Keywords: gender prescriptions and proscriptions, stereotyping, cognitive consistency, gender backlash
1993) qualified these findings in relation to social groups. They found that people opted for risk-averse treatments for members of desirable or socially valued groups (people in the US; hemophiliacs; leukemia patients) but chose risk-taking treatments for members of undesirable or socially devalued groups (people in Iran; IV drug users; AIDS patients).

Building on the research linking social deviance to risky decision making, we examined whether boys dressed in pink would be subject to risk-taking (vs. risk-averse) decisions by adapting the Asian Disease Problem to describe a flu outbreak expected to affect infant populations, and varied whether the male infants shown were dressed in pink or blue. Based on prospect theory, most people would be expected to choose the risk-averse treatment for all male infants regardless of clothing color. On the other hand, if people place less value on the lives and well being of male infants dressed in the “wrong” clothing color, then boys in pink would likely be subject to heightened risk-taking (consistent with Levin & Chapman, 1990, 1993). Such a finding would imply that a social-artifactual gendered color cue might have become imbued with a gender “essence” (for how artifacts might be perceived as taking on essences, see Bloom & Gelman, 2008), such that its violation places male infants at risk, despite not having agency or choice in their clothing options.

Pilot

The main thesis so far has been predicated on the assumption that pink clothing for male infants would be more socially prohibitive than blue clothing for female infants. We conducted a pilot study to test this hypothesis directly.

Method

Participants. Forty participants (21 female; 19 male) were recruited via MTurk.com, a crowd-sourcing website run by Amazon.com. All participants had an MTurk approval rating of 95% or higher and lived in the United States. Participants received $10 for their participation in the study.

Procedure. Participants completed different versions of the Infant Flu Problem online. This problem consisted of three photographs presented side-by-side followed by a written scenario. The photographs were of the same three infants dressed in either pink or blue plain clothing. All infants were labeled as male. Information provided with the photographs included birthplace (controlled for familiarity) as well as gender and age in months. Infants were piloted to be equivalent on perceived health and ‘cuteness.’ The clothing color was digitally altered. Participants were randomly assigned to view male infants dressed in pink or in blue. All participants read the following:

Imagine that orphanages in Romania are preparing for a highly infectious strain of the flu that is predicted to infect their entire infant population. The health board advises them that they can take one of two measures to combat the flu. An orphanage in a small province of the country is facing particularly hard times and has very limited resources. However, they will receive government funding for one of the treatment plans, but must choose between them. Your job as the orphanage administrator is to decide which treatment to choose. Shown above are the three babies currently housed at the orphanage. All three babies are equally healthy and well-tempered. The orphanage staff have included information about each baby. Assume that the exact scientific estimate of the consequences of the treatments are as follows:

Treatment A is a vaccine known to combat this strain of the flu, but is only available in limited quantities and can only be administered to 1 of the 3 babies in the orphanage. If treatment A is chosen, Baby 3 has been randomly selected to receive the vaccine and will stay healthy.

Treatment B is an experimental treatment, which can be administered to all the children, but only 1/3 of the batches of the drug are effective. The other 2/3 of the batches are completely ineffective and there is no guarantee that the orphanage will receive a batch that contains an effective vaccine. If treatment B is chosen there is a 1/3 probability that all three babies will stay healthy and a 2/3 probability that none of the babies will stay healthy.

Which of the two treatments would you favor?

Subsequently, participants completed a demographic questionnaire followed by a funneled debriefing (Bargh & Chartrand, 2000).

Results and Discussion

As expected, pink was significantly more proscribed for boys ($M = 8.05, SE = .42$) than blue was for girls ($M = 5.80, SE = .44$), $t(38) = 3.68, p = .001, d = 1.19$; providing empirical evidence for clothing color proscriptions.

Experiment 1

We presented participants with a modified Asian Disease problem consisting of a scenario about a flu outbreak expected to affect male infants, in a gain frame. Participants were asked to choose a risk-averse or risk-taking treatment for infants dressed in blue versus pink. In accordance with prospect theory, people would be predicted to choose the risk-averse treatment regardless of clothing color. However, if boys in pink are perceived as transgressive, they would likely incur more risk-taking.

Method

Participants. Thirty-one participants (16 women and 15 men) were recruited via MTurk.com and received $.10 for their participation.

Procedure. Participants completed different versions of the Infant Flu Problem online. This problem consisted of three photographs presented side-by-side followed by a written scenario. The photographs were of the same three infants dressed in either pink or blue plain clothing. All infants were labeled as male. Information provided with the photographs included birthplace (controlled for familiarity) as well as gender and age in months. Infants were piloted to be equivalent on perceived health and ‘cuteness.’ The clothing color was digitally altered. Participants were randomly assigned to view male infants dressed in pink or in blue. All participants read the following:

Imagine that orphanages in Romania are preparing for a highly infectious strain of the flu that is predicted to infect their entire infant population. The health board advises them that they can take one of two measures to combat the flu. An orphanage in a small province of the country is facing particularly hard times and has very limited resources. However, they will receive government funding for one of the treatment plans, but must choose between them. Your job as the orphanage administrator is to decide which treatment to choose. Shown above are the three babies currently housed at the orphanage. All three babies are equally healthy and well-tempered. The orphanage staff have included information about each baby. Assume that the exact scientific estimate of the consequences of the treatments are as follows:

Treatment A is a vaccine known to combat this strain of the flu, but is only available in limited quantities and can only be administered to 1 of the 3 babies in the orphanage. If treatment A is chosen, Baby 3 has been randomly selected to receive the vaccine and will stay healthy.

Treatment B is an experimental treatment, which can be administered to all the children, but only 1/3 of the batches of the drug are effective. The other 2/3 of the batches are completely ineffective and there is no guarantee that the orphanage will receive a batch that contains an effective vaccine. If treatment B is chosen there is a 1/3 probability that all three babies will stay healthy and a 2/3 probability that none of the babies will stay healthy.

Which of the two treatments would you favor?

Subsequently, participants completed a demographic questionnaire followed by a funneled debriefing (Bargh & Chartrand, 2000).
were dressed in pink. See left panel in Figure 1. There was no effect of participant gender.

Furthermore, choice justifications in the funneled debriefing varied as a function of color condition: When selecting the risk-averse option for boys in blue (option A), the more common justification (67%) was to avoid the worse-case scenario of no one surviving (e.g., “I thought about how at least with Option A, one baby would definitely be protected, whereas with Option B there was a 2/3 chance no babies would be protected”). The more common justification (80%) for selecting the risk-taking option for boys in pink (option B) however, was to “be fair” and to not prefer one boy over the others (e.g., “What has the chance of possibly saving the most babies? A means only 1 baby (1/3) will be saved, but B means that all 3 babies could possibly be saved.”). Despite these moral justifications in the service of “being fair,” however, boys in pink were de facto subject to riskier decisions about their health.

It is possible, however, that the findings resulted from an expectancy effect—people anticipated that boys would be dressed in blue based on real-world base rates. Encountering boys in pink might have caused more risk-taking based on a violation of familiarity alone or mere exposure (Zajonc, 1968). Perhaps any nonfamiliar exemplar would elicit more risk taking; a possibility we examine in Experiment 2.

Experiment 2

Experiment 2 was designed to rule out a simple familiarity-based/expectancy effect in Experiment 1 using watermelon, a nonhuman biological kind. Watermelon was chosen because it has frequently encountered (red) and infrequently encountered (yellow) subcategories. We examined whether people would choose the risk-averse versus risk-taking option as a function of watermelon color. According to prospect theory, participants were predicted to opt for the risk-averse option in a gain frame, regardless of color expectancy.

Methods

Participants. Thirty-one participants (20 women and 11 men) were recruited via MTurk.com and received $.10 for their participation.

Procedure. The experimental vignette (the Fungus Problem) was a variation of the Flu Problem in Experiment 1, describing an outbreak of a fungus expected to decimate three varietals of watermelon. Participants viewed pictures of either three yellow watermelons (low expectancy condition) or three red watermelons (high expectancy condition). If treatment A was chosen, Watermelon Varietal C was randomly selected to receive the fungicide and guaranteed to stay fungus-free. Treatment B was offered as an experimental treatment, which could be administered to all the watermelon varietals, but only 1/3 of the batches of the fungicide were effective. If treatment B was chosen, there would be a 1/3 probability that all watermelon varietals will stay fungus-free and a 2/3 probability that none of the watermelon varietals would stay fungus-free. All procedures were identical to Experiment 1.

Results and Discussion

There was no expectancy effect on participants’ decisions. Participants preferred the risk-averse option for color frequent (87.5% choosing Treatment A vs. 12.5% choosing Treatment B) and color infrequent (86.7% choosing Treatment A vs. 13.3% choosing Treatment B) conditions. One-way Chi Square tests showed that participants significantly preferred Treatment A (the risk-averse option) in both the color frequent condition, $\chi^2 = 9.67, p < .05$, $d = 2.45$, and color infrequent condition, $\chi^2 = 8.07, p < .05, d = 2.16$. These data are consistent with prospect theory (Tversky & Kahneman, 1981). See right panel in Figure 1.

General Discussion

A male infant dressed in pink could pay the price of violating a socially constructed gendered color norm (pink is for girls, not boys) by incurring riskier decisions about his health and well being. However unsettling, this finding fits well within recent theorizing on cognitive consistency. Notably, Sherman, Allen, and Sacchi (2012) argued that a counterstereotypic instance tends to create an incompatible cognition, which is then oftentimes resolved by assimilating individuating information to a stereotype. Within Sherman et al.’s (2012) framework, encountering an infant dressed according to feminine prescriptions/masculine proscriptions could lead to reclassification of this infant as an atypical
exemplar or a subtype of the male gender category (e.g., “weak”), which preserves cultural beliefs about the male category structure. Risky decision-making about boys in pink is consistent with the phenomenon of gender backlash, which refers to social penalties directed at people who violate gender norms (Rudman, 1998). Rudman and colleagues (e.g., Rudman & Mescher, 2013) have shown that men who engage in behaviors associated with women (e.g., ask for family leave) are perceived as possessing fewer desirable masculine traits (e.g., competence and assertiveness) and more undesirable feminine traits (e.g., weakness and uncertainty), resulting in workplace penalties. This social reality serves to reinforce a status quo in which gender normative men retain the highest status (consistent with the status-incongruity hypothesis [SIH]; Moss-Racusin, Phelan, & Rudman, 2010), thwarting a system threat against gendered social hierarchies. A caveat is in order, however. One main limitation of the current study is that it showcases risky decision-making with boys in pink but it does not address a femininity stigma directly or objective discrimination (risk-taking in our paradigm could be rationalized as moral). We advocate for future research that would examine whether boys in pink are indeed subtyped (e.g., perceived as feminine or as gay: see Bosson, Prewitt-Freilino & Taylor, 2005) as well as subject to prejudice and discrimination (e.g., are liked and played with to a lesser extent).

The reification of clothing color as demarcating gender with an emphasis on what boys and men should not wear speaks to societal attempts at policing gender to maintain a status quo in which “real” men disavow feminine characteristics, a predicament that is especially harmful to atypical men but also limits gender conforming males’ ability to express themselves fully (see Rudman & Mescher, 2013). Would a man wearing a pink shirt be subject to riskier medical decision making than if he were wearing blue? Physicians (and other rational individuals) would likely find such a question absurd but our data beckon further exploration of color and other subtle yet potent gendered cue violations on prejudice and discrimination against atypical males.

References

Prentice, D. A., & Carranza, E. (2002). What women and men should be, shouldn’t be, are allowed to be, and don’t have to be: The contents of prescriptive gender stereotypes. Psychology of Women Quarterly, 26, 269–281. doi:10.1111/1471-4602.00066

Received July 7, 2013
Revision received September 3, 2013
Accepted September 15, 2013